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ABSTRACT Fall detection is an essential technology for ensuring the safety of elderly individuals, as falling
accidents are critical and can cause significant functional damage in old age. Our previous work focused
on fall detection with just a single individual, using simple statistical aggregation to achieve low model
complexity and moderate accuracy. However, the pose estimation model may score low confidences on
individual body parts (landmarks), affecting the aggregated statistics, thereby resulting in incorrect fall
detection status. To solve this problem, we propose an enhanced fall detection method that adopts the
Kalman filter for improved landmark and fall detection and object tracking for multi-person fall detection.
Specifically with the Kalman filter, we reduce noise in network model’s heatmaps and landmarks with an
adaptability across different input video sources. Compared to other methods that analyze AI models’ hidden
layers and the layer outputs for providing confidence of measurements, this approach has a big advantage of
plug-and-play for the pose estimation models and other streaming models that provide confidence. Tested
on a computer with i17-13700HK, RTX 4070, 32 GB RAM, and a full HD camera, our method achieved an
F1-score of 0.944 in the multi-person setup and 0.933 in the single-person setup.

INDEX TERMS Adaptive filtering, artificial intelligence, data assimilation, fall detection, Kalman filter,
pose estimation.

I. INTRODUCTION

Living standards have improved over the years. This affects
the human life expectancy level, causing it to continue to
rise. According to the World Health Organization, the global
average human life expectancy has increased from 66.9 years
in 2000 to 73.1 years in 2019 [1]. Many factors contribute to
this, such as medicine, nutrition, health services, and other
improvements [2]. However prolonged the life expectancy
has been, accidents may still happen, such as fall injuries.
In 2021, fall injury placed second in the leading causes
of death by unintentional injuries [3]. This is a significant
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concern because older individuals receive severe functional
damage (functional decline) from falling accidents even if he
or she has survived it [4], [5]. Therefore, immediate medical
care is needed to prevent this damage from being a death
sentence.

Various research in fall detection uses wearable, vision,
ambient, and/or fusion-based systems [6]. To accurately
capture a falling motion, most works use and develop state-
of-the-art artificial intelligence (AI) models for detecting
the state of the human subject as fall or non-fall. In those
approaches, however, increasing the performance in cor-
rectness comes with a drawback; the performance in model
complexity decreases as a trade-off. This can be seen with
most neural networks that process spatio-temporal input [7],
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[8]. Our previous work focused on developing a single-person
fall detection model with low model complexity and moder-
ate correctness performance [9]. This was done by capturing
the state of the human subject as a single parameter in every
frame and simply aggregating these parameters as a single
decision parameter. This also differed from most models
that accumulated the landmark distribution every frame
and continuously processed the data in resource-intensive
spatio-temporal networks. As an achievement, our model
scored the lowest model complexity of 426 FLOPs/f (The
corrected calculation is found in [10].) among many other
models [9].

Having achieved the lowest model complexity, we now
focus on increasing the performance in correct detection as
well as extending the detection capability to multi-person fall
detection. Increasing the model’s correctness performance
is always desired. Distinguishing fallen individuals from
one another is also crucial for accurately tracking each
individual’s state of fall or non-fall. All of this is to be
done while the cost remains low. To do this, we propose
the simple multi-person fall detection model (SMFDM),
which uses the computer vision pose estimation technique
combined with the Kalman filter for increased correctness,
object tracking for multi-person identification, and a series
of simple calculations to detect human falls. Specifically for
the filter, the landmarks parsed from the network’s feature
maps—heatmaps—are used to evolve the maps, combining each
person’s movement into the maps for enhanced results. Also,
the confidence of the pose estimation model in inferencing
landmarks is applied to the measurement covariance matrix
of the Kalman filter for adaptability. The main contributions
of this paper can be summarized as follows.

1) The Kalman filter is used to estimate the position and
velocity state variables of 2D and 3D landmarks. For
the 2D space, the difference between the 2D estimated
and raw landmark positions is calculated, which is
used to evolve 2D heatmaps accordingly. Then the
3D landmarks are filtered. This process effectively
combines the pose estimation model and the filters to
increase the correctness of the fall detection.

2) The heatmaps contain the confidence of each landmark.
We use this information as the uncertainty in the
measurement, providing adaptability of the filter on
different input source environments as well as model
exchangeability.

This paper is organized as follows: Section II presents
related works, Section III describes SMFDM, Section IV
presents the experiment, Section V discusses the results, and
Section VI concludes the paper.

Il. RELATED WORKS

This paper uses the pose estimation model to detect falling
accidents. The Kalman filter method improves correctness,
and object tracking extends single-person detection to multi-
person detection. As such, this section presents works related

VOLUME 13, 2025

to our paper: fall detection systems, the Kalman filter, and
object tracking.

A. FALL DETECTION SYSTEMS
Most fall detection systems use wearable, vision, ambient,
and/or fusion techniques [6], [11].

1) WEARABLE-BASED SYSTEMS

For wearable-based systems [12], individuals wear wrist-
bands or belts with accelerometers that process the body’s
movements. If the wearable senses an abrupt downward
motion of great magnitude, it is highly likely that the
individual has fallen.

Yu et al. [13] proposed a lightweight yet robust neural
network system, TinyCNN, that can detect falls from the
inertial data of wearable sensors. They used the publicly
available KFall [14] and SisFall [15] datasets, which
contain diverse kinds of falls and distinct subjects, which
helped generalize their model. Furthermore, they used a
quantization technique to reduce the model size on top of
low model complexity [16]. Through this, they achieved
0.9983 sensitivity and 0.9917 specificity on the KFall dataset
and 0.9829 sensitivity and 0.9849 specificity on the SisFall
dataset. However, their system constantly consumed battery
power, which they mentioned to address in future work.

Hashim et al. [17] proposed a method of combining
multiple wearable sensors to detect falls in patients with
Parkinson’s disease. The accelerometer node was composed
of tilt switches and an accelerometer. The tilt switches
detected extreme tilt of the body orientation of the patient
in a falling accident, and the accelerometer detected falling
motion. Myoware muscle sensor node measures force
pressure and the muscle activity of the patient. The results
are received by the receiver node for the alert. For test cases,
they created thirteen sequences of activities of daily living
(ADL) and fall events, and scored 0.9305 to 1.0 accuracy
with various acceleration thresholds. A substantial advantage
of this system is that sensors of the system wake and sleep
at an appropriate time step of the algorithm flow for low
battery consumption. However, detection cannot be made if
the accelerometer node or the Myoware node failed to collect
or transmit data to the receiver node, regardless of the cause.

Overall, the main concern in these systems is whether the
wearable can be worn or turned on at all times. These devices
run on battery and must be taken off for recharge. Also, the
wearable must feel comfortable on the wearer’s wrist or waist.
Sweating from the wrist or waist may lead to the individual
taking the wearable off [18], [19]. A woman wearing a dress
may choose not to wear the device on the waist because the
device may ruin the beauty of the outfit [20].

2) VISION-BASED SYSTEMS

Vision-based systems do not have these downsides, as there
is no need for the wearable. Instead, a camera captures
the motion of the individual in the view, detects sudden
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movement, and decides if a fall has occurred. However, the
primary concern with the vision method is that the individuals
may be identified, possibly leading to a privacy violation.
Because of this, minimal features from the video are
extracted to recognize the individuals’ orientations without
direct identification via silhouette segmentation or pose
estimation.

Lee et al. [21] introduced a novel deep-learning model
designed to process dynamic vision sensor (DVS) data. Since
a DVS captures pixel-level RGB changes and processes this
information into a compressed stream, privacy is enhanced
compared to that with traditional cameras. The authors
adapted the original temporal segment networks [22] to better
handle DVS data. Specifically, they removed the network
layers that handle spatial information but retained those for
temporal information. This allowed for minimizing spatial
processing for optical flow, which involves minimal RGB
variations while preserving the model’s ability to analyze
changes in time. With additional optimizations to improve
performance, their model achieved an Fl-score of 0.955 at
31.25 FPS on the GPU. One downside with their approach
is the affordability of a DVS, with low-grade products being
around €1,600.00 [23].

Some systems use pose estimation techniques to identify
the landmarks on the human body [24]. This landmark
data represents body orientation and detects movement
while respecting privacy. Chang et al. [25] introduced the
pose estimation-based fall detection methodology, which
combines a pose estimation model with a deep-learning
model for human action recognition to detect falls from
video streams. For pose estimation, they proposed OpenPose-
light, which replaces VGG-19 with MobileNetV2 from 2D
Lightweight OpenPose [26]. This allows for faster landmark
inference and fewer parameters without compromising per-
formance. For fall detection, they incorporated an LSTM
module [27], which processes the input from OpenPose-light
pose estimation map. Furthermore, they applied the centroid
tracker [28] to identify each individual in the frame. The
tracker followed the human head as it was tested to be
the most visible part of the human body, but there was no
mention of the case where the head was hidden from the
camera’s view. The overall detection achieved an accuracy
of 0.981.

3) AMBIENT SENSOR SYSTEMS

Whereas most vision-based systems implement techniques
to protect individuals’ privacy in footage, ambient sensor
systems are inherently more robust in respecting privacy.
Chen et al. [29] introduced a low-resolution infrared sensor
system designed to monitor the movement of elderly
individuals for fall detection from temperature. Their system
used two synchronized sensors to capture the scene, and
the scene images were preprocessed for reduced noise and
elimination of the background. They applied the angle of
arrival positioning algorithm to track the individuals and used
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the K-nearest neighbor classifier to identify human actions
as either a fall or a non-fall. Low resolution reduced the
computational cost of the system, but the accuracy of 0.93 is
low among other infrared fall detection systems.

Tanaka et al. [30] built a virtual home with a motion
sensor on the ceiling with an aging person modeled as an
autonomous agent to simulate smart homes [31]. Having
produced nine years of data collected on virtual sensors,
they trained and compared a rule-based method, HMM,
random forest, and decision tree. For the decision tree, the
scores were 0.96 sensitivity, 0.29 false alarms per day, and
83.43 hours per false alarm. The simulated environment was
that the elderly person lived alone and performed ADLs
with no awkward motion. However, the usual occurrences
of fall accidents differed from those of the real-world
environment.

4) FUSION SYSTEMS

Fusion-based systems combine inputs from multiple sensors
to use all available information, resulting in improved
detection correctness compared to single-device systems [6].
Abro et al. [32] designed a multi-modal fall detection method
that processed vision and inertial sensor data from the
UR Fall Detection (URFD) dataset [33]. With the vision
sensor data, human silhouette and subsequently skeleton
were modeled, from which features were extracted. With
the inertial data, a sliding window captured both static and
dynamic motion, Parseval’s energy was estimated, and the
Gaussian mixture model was applied for inertial feature
extraction. The resulting vision and inertial features were
concatenated and optimized, and a multi-layer perceptron
classification model was trained. This model scored an
accuracy of 0.88. The use of an optimization technique to
select the most relevant features lowered the computational
cost of the classification model. However, the cost may
further be reduced by modeling the skeleton from raw vision
data.

Xu et al. [34] proposed a fall detection algorithm that
combined a threshold-based method (TBM) and CNN. For
the sensor, they designed a wearable that used an accelerom-
eter and a gyroscope. TBM used sensor information to
suspect a fall of the wearer, and if it was suspicious, the
accelerations were aggregated and encoded into an RGB
image, which the CNN module took as its input to decide
if a fall accident had happened. Training and testing on
the SisFall [15] and the FARSEEING [35] datasets, the
algorithm achieved 0.9746 accuracy. The CNN module had
high complexity, leading to their subsequent research on
a combined TBM and recurrent neural network-LSTM-—
method on the accelerometer only [36]. When the TBM
module decided a suspicious activity had happened, three
axial LSTM modules of the same structure processed
respective dimensional accelerations for a final decision,
scoring a 0.9907 accuracy.

Table 1 summarizes the works presented above.

VOLUME 13, 2025



J. Yang et al.: Multi-Person Fall Detection Using Data Assimilation Method With Kalman Filter

IEEE Access

TABLE 1. The summary of fall detection methods.

Category Authors Scores Datasets Advantages Disadvantages
0.9829-0.9983 (?eueargleza?rll(i)ril 0;103; Constant batter:
Wearable Yu et al. [13] sensitivity,  0.9849- | KFall, SisFall P e ; y
P to reduce model | drainage
0.9917 specificity .
complexity
. Created dataset of 13 Wake and SICCP (.)f Fhe A smg'l e sensor failure
Wearable Hashim et al. [17] 0.9305-1.0 accuracy sensors to minimize | rendering system non-
sequences .
- T - battery usage functional
. reate ataset o - . DVS not financially
Vision Lee et al. [21] 0.955 F1-score 1860 sequences DVS for High privacy viable
Using a different
. Created dataset of 800 | backbone for pose | Occlusion of the head
Vision Chang et al. [25] 0.981 accuracy sequences estimation model for | not considered
lower complexity
Low  computational .
. Low detection score
Ambient Chen et al. [29] 0.93 accuracy ires;iiamset of 160 COStl . from . flow(i compared to other am-
seq ) resolution Inirare bient sensor systems
0.96 sensitivity, 0.29 sciisors
At > . Realistic ADL L. N
Ambient Tanaka et al. [30] 221318:3 a}llarms per fd?y, Sirrtt?fll:;d e(;?;aset of 9 motions and g;riial;mc fall
. ours per false V! sequences g
alarm
Feature optimization Re((iiurll_d ant ; "Hil uman
Fusion Abro et al. [32] 0.88 accuracy URFD for low model | Mmodelng ol st oue.tte
: and skeleton creation
complexity . .
Eloss?rrlgsgyroscope in
. 0.9746-0.9907 . Lower complexity of . .
Fusion Xu et al. [34], [36] accuracy SisFall, FARSEEING LSTM over CNN gcl)lrsmvs(t)lrokn from previ-

B. THE KALMAN FILTER
To improve the detection scores from sequential data,
developers also use filtering algorithms. One such algorithm
is the Kalman filter, which combines noisy observations
about a system to estimate the actual state of the system
by recursion [37]. There are two main steps: prediction and
update. For the prediction, the current state is projected
forward based on the filter’s process model to form the
prior estimate. For the update, measurements with noise are
combined with the prior and minimize error in the process
and the measurement to form the posterior estimate [38].
The basic Kalman filter can effectively model linear
systems, such as a projectile motion in a friction-free
environment, as the underlying mathematics is linear algebra.
However, the filter can diverge if the system is nonlinear,
such as air drag on a projectile. To address this problem,
mathematicians have developed a technique to linearize the
system. The extended Kalman Filter computes the Jacobian
matrix at the current estimate to approximate the system as
linear [39]. If the nonlinearity is strong, sampling from the
probability distribution can be done, which is used in the
unscented Kalman filter and the particle filter [40]. Also,
if the selected filter model is weak in targeting the system
due to constant changes in the conditions, algorithms that can
adapt to these conditions can be applied [41], [42], [43], [44].
For practical use in pose estimation, Buizza et al. [45]
used filters to model the motion of the landmarks. They
applied filters and conducted a comparison study with and
without a filter; zero-, first-, and second-order, and velocity-
as-input Kalman filters; and the particle filter. Among these
models, the second-order acceleration and the velocity-as-
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input models performed best. Although they declared their
approach real-time, they obtained the noise information using
the ground truth from a single dataset—PoseTrack 2018 [46]—
which may not be well-adaptive to real-world video or
significantly different datasets.
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FIGURE 1. Schematic process of object tracking.

C. OBJECT TRACKING

To recognize the actions of multiple individuals, the neces-
sary features must be distinguished from one individual to
another. Object tracking is a computer vision technique to
track objects with their movements in a video sequence to
differentiate them from one another [47]. Fig. 1 shows the
schematics of this process. For increasing productivity in
aquaculture, Shreesha et al. [48] tracked the movement of the
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fish to analyze the behavior and visualize the stress in the fish.
To effectively track the fish, they computed the temporal and
spatial scores for tracking the motion as well as the similarity
score for the fish in similar appearances. Chang et al. [25] also
used a tracker, namely the centroid tracker, to distinguish the
individuals in the input frames from one another [28].

As different as the cost or score computation algorithms
may be, it is the data association algorithm that assigns
each tracked object with an ID. This algorithm can be
divided into two categories: global and greedy. The global
assignment algorithms find the IDs that minimize the cost or
maximize the score the most from all available combinations
of assignments [49]. As the best group with the lowest
cost must be found, the time complexity is generally high,
approaching O(n?logn) [50]. The greedy algorithms find
the minimum-cost match for the first object, remove the
match from the pool, find the best match with the leftover
objects, and repeat the process until a solution is found [51].
Many greedy assignment algorithms have different time
complexities and solution ranges, but all are generally faster
than the global assignment algorithms [52]. A threshold for
the cost comparison must be applied in case of unbalanced
assignment when the object with the highest costs is first
selected, which results in wrongful assignment [51].

lll. METHODOLOGY

Our algorithm, SMFDM, can best be presented in the
following order: single-frame (SF) pose estimation, the
Kalman filter, object tracking, SF fall detection, multi-
frame (MF) fall detection, and dataset and final detection
implementation. Fig. 2 shows the overall process of SMFDM.

A. SINGLE-FRAME POSE ESTIMATION

The OpenPose variant 3D Lightweight OpenPose [53]
produces landmarks of multiple people in an image frame.
This model works by inferencing 2D landmarks from the
2D image frame and using the 2D landmarks to generate
3D landmarks. More precisely, the 2D landmarks are first
represented with heatmaps from 2D image encoding. A single
heatmap may contain a single corresponding landmark region
or multiple regions, depending on the number of people in the
image frame [54]. Secondly, the 2D encoding, the heatmaps,
and the part affinity fields (PAFs) are processed with a 3D
encoding layer to produce 3D landmark maps. A part affinity
field is a vector field that contains information about the
connection for each joint [55]. Finally, the 2D heatmaps,
PAFs, and 3D landmark maps are parsed and grouped into
2D and 3D landmarks per person, with 19 landmarks in each
set.

B. THE KALMAN FILTER APPLICATION

To increase the performance in correctness of landmark
detection—and thereby increase the correctness in fall
detection—the Kalman filter is applied. We model the
movement of people-landmarks—in 2D and 3D space as
our state variables. The transformation from 2D space to
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3D space, as well as the reverse process, is a nonlinear
transformation. Modeling a nonlinear system requires a
nonlinear method, which is computationally more expensive
than linear methods [56]. Therefore, we model 2D and 3D
landmarks as separate variables and use the linear method on
each variable set.

The state X,—~without a superscript—for 2D and 3D land-
marks and their respective velocities—with superscripts—is
represented as follows:

)?,(2")
=(2n)
— | X
Xt = 2t(3n) (1)
;}3”),
where 7 denotes time step, Xd™ denotes positional vector
of corresponding dimension, @m) genotes velocity vector.
The superscripts indicate whether the base is a 2D vector
or a 3D vector. If there are n number of landmarks, the
vectors with superscripts (2n) and (3n) belong to the spaces
R2" and R3", respectively; therefore, for the stacked vector,
%, € R19 Note that the variables x and x in this subsection
denote Kalman filter’s position and velocity state variables
as standard notation. They are not to be confused with the
directional variables x, y, and z in Section III-D.

We also keep track of the uncertainty of the system
with the state covariance matrix P, € R10nx107 " which
quantifies the uncertainty of the individual state variables
as variances—diagonal terms—or in between the variables as
covariances—off-diagnoal terms [57].

The state and the state covariance matrix undergo predic-
tion and update for prior and posterior estimates, respectively.
To model the prediction, we introduce the second equation of
motion from physics [58],

1
o=t + v At Sar (A1)?, 2)

where p, v, a, and At are position, velocity, acceleration,
and small change in time, respectively. We assume constant
acceleration during each time step and use up to the first
order terms—positions and velocities—in the transition matrix
F, € RlOnXlOn:

(2n)
F 0
F; = |: ZO F(3n) i| (3
1 ’
with
F§2n) _ |:I(2”) T(;"):|
0 I
3 16 TGn)
F§ n _ |: e )

where I'4i™ is the identity matrix of dimension corresponding
to the superscript and TW™ = J@MA; We model
the leftover second order term—acceleration—as the process
noise w, ~ N (0, Q;) with the process covariance matrix
Q; € R!Ox10n Agsuming independence across dimensions,
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FIGURE 2. The overall schematics of the SMFDM process.

we write the unit process covariance matrix along a single
dimension as follows—with the scaling, continuous noise term

Qc [57]:

1 41 3
nity _ | 7 (A" 5 (Ar)
= [‘%‘ (An? Z(At)z :|Qc~ (%)

The components of Q"™ are appropriately placed in the
complete Q; for all dimensions and landmarks. Then the
predicted prior state and state covariance matrix can be
written as follows:

i=FiE0, 4+
P, =FP' FI +Q, (6)

where — and + on the superscript denote prior and posterior,
respectively.

Now, we model the update step. For a valid measurement
set Z;, the measurement covariance matrix R, and the
measurement matrix H; are constructed and used to compute
the Kalman gain K;, which incorporates the uncertain
state prediction and measurement together to form a good
estimate [39]. Compared to the work by Buizza et al. [45],
which used ground truth information for uncertainty, we use
the network’s confidence in the inference to model the
measurement covariance matrix [53], effectively modeling
inputs from different data sources at different time steps
accordingly. With the Kalman gain, the posterior state and
state covariance matrix can be expressed as follows:

—1
K, =P H' (H,P,—H,T + R,)

T
P = (1<5"> - K,H,) P, (I(S") - K,H,)

+ K,R/K]. (7
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The 3D Lightweight OpenPose detects only the positional
variables [53], meaning that they are the only observed
variables and the velocity variables are hidden. This restricts
the dimension of the measurement to 5n. Additionally, the
heatmap confidence is assimilated into the measurement
covariance matrix R, for optimal results. If the confidence
is below a certain threshold, the corresponding measurement
is ignored. This further reduces the dimension of 7, to be
% € R form <= n. Subsequently, R; € R3mx5m and
H, € R>*10" State variables with missing measurements
will undergo only the prediction step for a threshold of
timesteps if previously measured.

Now, experimenting with the scaling terms and the initial
covariance will complete the formulation of the Kalman filter
application on the final output; however, to combine with
2D feature maps, we break up the 2D and 3D components.
The Kalman filter prediction and update are applied to
2D landmarks, and the 2D heatmaps and the PAFs are
evolved with the difference between the measurement and the
posterior estimate as follows:

;Ct,"'z = i:,robs - 2’
Ht+ =H: + Xz(,t{z)
Pr =P+ X7, 8
t — 't + t,+z> ( )

where +z on the subscript means displacement from measure-
ment to posterior; 5c't+ obs 18 posterior observed variables; H and
‘P are original 2D feature maps (heatmaps and PAFs); H ™" and
P+ are evolved feature maps; and X 47 18 X1 4+, mapped onto
the heatmaps or PAFs space according to the superscript. Note
that prediction values are used for missing 7; components.
The resulting feature maps are entered in place of
the original measurements, along with the 2D encoding,

to produce 3D landmark maps. Then the 3D landmarks parsed
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from the landmark maps are filtered for enhanced estimates.
Fig. 3 shows the inference process with data assimilation.

C. MULTI-FEATURE OBJECT TRACKING

The 3D Lightweight OpenPose provides an additional feature
of greedy tracking with similar landmarks between the
previous and next ones over time. This similarity is treated
as intersection over union (IoU) as follows [53]:

number of overlaps
IoU =

©))

union of overlaps and non-overlaps

As the 3D Lightweight OpenPose makes single-shot
inferences on multiple people, tracking both 2D and 3D
landmarks fully and separately is redundant [54]. This is
reflected in the provided greedy tracking algorithm and, thus,
remains unchanged [53].

D. SINGLE-FRAME FALL DETECTION

After each of the landmark sets is numbered with object ID j,
SF fall detections are made. This is done by comparing the
distributions among the landmark components in 3D axial
directions. If the distribution in one direction is different from
those in other directions, the posture of the labeled set can
be determined. For the distribution statistic, we use standard
deviation, which measures the extent of scattering in a set of
values [59]. This is shown in the following equation:

2
2ok (Prj— p
. J s )" w0

where o is the standard deviation; p is the position in the
direction of width x, depth y, or height z; 1, is the average
position in p direction; and N is 19 as the total number of
landmarks [53]. j denotes j-th landmark set from the image
frame. If the value of the standard deviation is large, then the
coordinates are far apart. If it is small, then the coordinates
are close together. Since z is the coordinate in height, if the
standard deviation in height is less than that of either of the
horizontal directions x or y, then the person is considered
currently fallen. This current status curSt; is expressed by the
following equation:

curSt; = int (O'Z’j < Oy,jOroz; < O’y’j) an

The value of curSt; is either O for the current state of normal
(c-normal) or 1 for the current state of fall (c-fall). We also
describe the variables that are used throughout this work, i.e.,
normal N and fall F:

F=1 (12)

Using (12), we can represent the possible values of curSt;
in the following manner:

curSt; € {N, F'}. (13)
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E. MULTI-FRAME FALL DETECTION

Lastly, a series comprising curSt;s of consecutive temporal
sets of landmarks is processed. This ensures that the actual
status does not change, meaning there should be no false posi-
tives in single images. For example, a person may temporarily
get close to the ground to pick up something, which may be
marked as an actual fall. We adopt the two-stage check from
our previous work: intermediate cumulative detection and
final detection [9]. In the intermediate cumulative detection,
if most of curSt;s are equal to 0, then the person is in the
intermediate cumulative state of normal (ic-normal). If most
of them are equal to 1, then the person is in the intermediate
cumulative state of fall (ic-fall). The following equation

represents this:
iy
—;, curSt; (¢
icSt; (ts, tf) = int M > 0.5
#tf=z,-t

€ {N,F} (14)

where ¢ is a variable representing time, s and f denote the
temporal sequence’s start and end, int converts a type boolean
argument to type int, and # denotes the count of occurrences.
This is the average of all curSts in the time interval [z, f]
compared with the threshold of 0.5. This follows the current
status curSt; convention.

A schematic process of intermediate cumulative detection
is shown in Fig. 4.

Although the intermediate cumulative state is used to
prevent the false detection of fall status on a single frame,
a falling sequence from upright to fallen must be recognized.
Therefore, to produce the final status finSt; from the final
detection finDet;, different sequences of icSt; are arranged as
before [9]:

finStj = finDetj((icStj( (lw tf)k ))keW)
€ {N, F} ’ (15)

where (ts, tf) P = (t2k, t2k+1). The sequence rule indicates
that the time intervals—the sequence of icStjs—are in an
immediate, non-overlapping consecutive order, shown for
ic-normal to ic-fall in Fig. 5. Note the different usages of
subscripts and superscripts on the base #; the subscripts
will denote the frame numbers equal to the numbers in
the respective subscripts—as in every tick—and the super-
scripts will denote the ordering of selected frames—as
in the order of the intervals. As before, the possible
values of final detection are O for final-normal and 1 for
final-fall.

F. DATASET AND FINAL DETECTION IMPLEMENTATION

There are many datasets for studying fall accidents as well as
ADLs. URFD [33], Fall Detection Dataset (FDD) [60], and
Multicam Fall Dataset [61] are popular datasets that provide
videos for vision-based systems. Whereas these provide
valuable resources, our previous work primarily focused on
achieving low model complexity. To treat the problem simply
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FIGURE 4. Intermediate cumulative state detection example-ic-normal.
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FIGURE 5. Final state detection example—final-fall.

as our model would require, we had created our own dataset of
ADLs and falls. From Fig. 6, Normal 1 represents a standing
action (ADL), Fall 1 is falling from a standing position,
Normal 2 is recovery from a fall, and Fall 2 represents the
failure to recover. As this study enhances the algorithm and
focuses on the individual landmarks’ confidence, we adopt
our previous dataset scheme.

For the actual implementation of finDet; in (15), icSt;s
in (14) are calculated every frame with an averaging window
of 5 seconds, and a run-length encoding (RLE) algorithm
is used to group icSt;s. An RLE algorithm compresses a
sequence by counting the number of consecutive elements in
the sequence and replacing the occurrences of those elements
with the count and a single element representation for all
elements [62]. To read the order of consecutive icSt;s, the
count of the occurrences is unnecessary and thus dropped.
This is done using the Python library Pandas [63], [64].
An example usage of RLE on a sequence seqicsy; 1O encode
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2D Parse

Pose Estimation Filtered 3D Pose Estimation
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it as encSeqcs,; and generate the order ordSeq;cg;; is shown
below: '

Seqicstj:(N7N’N7F7N1N7F7F7F)

encSeqjcs; = RLE (Se%stj)
= (3N, 1F,2N, 3F)
ordSeq;g,; = ord (encSeqicStj)

=(N,F,N,F), (16)

where RLE and ord represent functions that process RLE and
the ordering from given, respective sequences.

This final detection is done for every tracked object with
ID j in the webcam footage. A three-person example of this
multi-person (MP) detection is shown in Fig. 7.

G. ALGORITHM

To summarize, our method applies the Kalman filter method
on pose estimation to obtain landmarks with reduced noise.
The landmarks are used to decide if the person has fallen
with aggregation and run-length encoding. With gop (image)
and g3p (H;", P;") as 2D and 3D landmark generators, the
algorithm is outlined in Algorithm 1.

IV. EXPERIMENT
A. THE SETUP
For the experiment, we have prepared three case studies: all
standing, all fallen, and mixed. Ten trials are conducted with
the following procedure:
1y
2)

Set up the computer and webcam system.

Three human subjects enter the webcam view. All limbs
must remain inside the view.

Start the SMFDM program with a window of 30 sec-
onds.

The subjects perform the action sequences in Fig. 6 that
correspond to the case study.

Record the detection result.

3)
4)

5)
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Arrangements Action sequence interCumulStatus sequence Final detection
(N.N) N
Normal 1 (ic-normal, ic-normal) (final-normal)
(N.F) F
Fall 1 (ic-normal, ic-fall) (final-fall)
(N.EN) N
Normal 2 (ic-normal, ic-fall, ic-normal) (final-normal)
Fall 2 VENF) i
(ic-normal, ic-fall, ic-normal, ic-fall) (final-fall)

FIGURE 6. Final detections from arrangements of icSt;s.

finDet; (icSt; (¢2, ¢4, ieSt; (6%, £3)) = 1

Landmark sets tracked in video sequence

-
curSt; = 0 curSt; = 0 curSt; = 0 curSt; = 1 curSt; = 1 curSt, = 1
to 7 ON___ i Liv1 tiuz N _tisa Liva tivs A t, timet
0 icst; (¢%,t1) = 0 t1 g2 icSt;(¢2,t%) =1 t3
finDet; (iCStj+1(tn,t1),iCStj+1(t2,t3)) =1
-
N curStjay = 0 curSty, =0 cursty,, =0 curSty,; = 0 cursty,; =0 curStjyy =0
to 7 ON___ G Livy tua N _tiss tiva tivs N ty timet
0 icSt,, (¢°,t1) = 0 g2 icSty, (15,63 =1 3
finDet; 4, (icStHz(tD, tl),icSthrZ(tZ,tg)) =1
to tiv1 tisa N N___ti+3 it tivs t, timet
icSty 42 (¢,t1) =0 tl g2 icSt; 1 (t4,6%) = 1 3
FIGURE 7. Schematics of multi-person fall detection showing the Fall 1 sequence (one of four action sequences).
TABLE 2. The input data of the case studies. N1, N2, F1 and F2 indicate Normals 1 and 2 and Falls 1 and 2 in order.
Case Studies Person 0 Person 1 Person 2
) NIJTFIL]N2[F2| NIJFIL[N2[F2 | NIJFI[N2]F2
1 10 0 0 0 5 0 5 0 3 0 7 0
2 0 10 0 0 0 5 0 5 0 7 0 3
3 5 5 0 0 3 4 2 1 3 1 4 2
Study 3 is a mix of Case Studies 1 and 2; some subjects

6) Repeat Steps 4 and 5 ten times.
7) Repeat Steps 4-6 for different case studies.

The case studies were conducted on a system with the
i7-13700HK, RTX 4070, 32 GB of RAM, and a Full HD
webcam in a light environment. Case Study 1 represents
the scenario of ADLs with no fall accidents. Therefore, all
subjects perform Normal 1 from start to end. Case Study
2 represents the scenario of all humans falling down. All
subjects perform either the action of Fall 1 or 2. Finally, Case
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perform Normal 1 or 2, and the rest perform Fall 1 or 2.
The experimentation setup is recorded in Table 2.

B. SCORE METRICS

We use accuracy and Fl-score as the classification metrics
and the micro-averaging method for multi-class classifica-
tion [65]. We start from binary to multi-class classification
and list four cases of a binary model’s detection.
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Algorithm 1 SMFDM With Kalman Filter

Initialize: template FI(,ZD), Qf? D),FE,ZD), Q;? D)
ZODI | paDL+ pOD).+
durations Ticst,TRLE

=(2D),+
-xt/ 2

E}

; ¢ with initial time value;

1: while true do
2: <t
3: Store current time into ¢
4: 2D Kalman Filter > (2D) superscripts omitted
s: {Z1}j, {€0}j, He, Pr <= gop (image;,) > ¢;: conf.
6: {Z;}; < Run object tracking on {7/, };
7: for j in length({z;};) do > index j omitted
8: F;.Q; < Update F,/,Q, with ¢
9: X, < F[)_é:f
10: P, < F,PTF +Q
11: Compute H;, R, with z;, ¢;
12: K, < P,H (H,P,H +R,)"
13: <X+ K (Z - HAD)
14: P/ <« I-KH)P, 1-KH)"
+ KR, K]
15: end for
16: end 2D Kalman Filter
17: Index observed variables }f obs
18 X4y < )'c':fobs —-%

19: H,Jr, 7;[+ <« Evolve H,, P, with mapped X; 4,
20: 3D Kalman Filter > (3D) superscripts omitted

21: {Z), {é1}j. < gap (HF. P)
22: for j in length({z;};) do
23: Similar to 2D Kalman Filter
24: end for
25: end 3D Kalman Filter
26: {x}j, {3}, {2}; < Assign components of {5c}(3D’+) Y
27: for index j in {X}; do
28: for p; = X;,y;, z; do
n P N2
29: UP,,/ < M
30: end for
31 curSt; < int (0,j < 0yj Or 07j < 0y,j)
. . tr:,,T. curSt;(t)
32: icSt; (t) < int i > 0.5
r=t—Tjest
33: sedjcgy; (f) < Sequence of {icStj}’T:t_TRLE
34: encSeqcs, (1) <= RLE (sequStj)
35: ordSeqs;; (#) < ord (encSequStj)
36: end for

37: end while

1) TP (True Positives): The number of positive instances
(Fall) correctly detected as positives.

2) TN (True Negatives): The number of negative instances
(Normal) correctly detected as negatives.

3) FP (False Positives): The number of negative instances
(Normal) incorrectly detected as positives.

4) FN (False Negatives): The number of positive instances
(Fall) incorrectly detected as negatives.
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TABLE 3. The results of the case studies in confusion matrix.

True
N1 | F1 | N2 | F2
N1 29 0 0 0
. F1 0 32 0 0
Predicted N7 I I 16 0
F2 0 2 1 8

Accuracy and F1-score can be explained using these terms.
Accuracy is the proportion of detections that the classification
model correctly detected. It is the most basic metric that
indicates the model’s overall correctness. The formula for
accuracy is given below:

TP + TN

TP+ TN +FP +FN’
whereas it is simple to compute, accuracy can be misinter-
preted in cases where one class outnumbers the others. If the
model treats all inputs as fall and there are 95 falling instances
and 5 normal instances, the accuracy will be 0.95, which is
very high regardless of false detections. Therefore, it is often
provided in conjunction with other metrics, such as precision,
recall, and Fl-score. Precision is the proportion of correct
positive detections over all positive detections, and recall is
the proportion of correct positive detections over all positive
instances. The formulas for precision and recall are given
below:

Accuracy =

7)

. TP
Precision = ——
TP + FP
TP
Recall = ——. (18)
TP + FN

As precision is sensitive to false positives and recall is
sensitive to false negatives, these metrics can be combined
to give a balanced score metric of Fl-score. Fl-score is the
harmonic mean of precision and recall, given below:

Precision x Recall
Fl-score =2 x — . (19)

Precision + Recall
So far, the metrics have been explained using binary
classification concepts. In multi-class, all classes are positive
in their respective point of view. Therefore, a method to
average the results is needed. Micro-averaging is a strategy
to give a single metric score by counting all detections
separately in four cases and calculating the overall metric
score. The micro-averaged precision, recall, and F1-score are

given by the following equations:

Zc TPC

Precision .. — — <€~ ¢
recisionmicro S (TP, 1 FP)
TP,
Recallpicro = L
> (TP, + FN,)
Precisioniero x Recally;
Fl-scorepiere = 2 X —riOllmicro X BEC&Tmicro )

Precisionmijcro + Recallpicro

The micro F1-score defined above is used for our model’s
multi-class detection of Normal 1, Fall 1, Normal 2, and
Fall 2.
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TABLE 4. Comparison among fall detection models.

Method Accuracy Remarks
Convl1D [67] 0.9983 o Determine landmarks that contribute to detection
PEFDM [25] 0.981 o Used different backbone for .low model complexity
e Does not handle head occlusions
o Plug and play: Final refinement can be applied to all other methods in this
SFDM [9/SMFDM 0.925/0.933 . ;i?lfoll?érg;)ciiie;ielj?ftli);g g:g(liaerlls ian use our method for heatmap evolution
o Increased accuracy by 0.008
ST-GCN [68] 0.924 o Substantial complexity of 16.32 B FLOPs [69]
BP-2RF [70] 0.8999 o No multi-person detection
Conv3D [71] 0.805 o Low detection score

We run our model and obtain the confusion matrix in
Table 3. Using the above metrics, micro-averaged accuracy
and F1-score are calculated to be 0.944.

V. DISCUSSIONS

On the multi-person detection data, our model scored
0.944 micro-averaged Fl-score. For a direct comparison,
we applied SMFDM on our previous dataset [66]. The perfor-
mance in correctness has increased from the micro-averaged
accuracy of 0.925 of the single-person detection algorithm [9]
to 0.933. This improvement is most likely due to the Kalman
filter, which would correct noisy measurements to give more
consistent curSts, and thus more correct icSts and finSts over
time.

As for the performance in speed, detections were made
at 27.4 FPS, compared to 28.2 FPS from the single-
person model [9]. Object tracking is applied on each set of
landmarks, and the fall detection algorithm part performs
detections on all subjects in the webcam view; therefore, this
decrease is well expected but is too small to be safely ignored.

We also compare the accuracy of selected pose-estimation-
driven machine- and deep-learning fall detection methods,
as shown in Table 4.

Our fall detection method, with 0.933 accuracy, falls in
the middle. Our previous single-person approach had scored
0.925 accuracy. By applying the Kalman filter methodology,
the score increased from 0.925 to 0.933.

The above results indicate that fall detection methods
can adopt the adaptive Kalman filter method to gain
correctness performance. Specifically for pose estimation,
the Kalman filter can readily be used to adaptively change the
measurement covariance matrix on the final output to reduce
noise as plug-and-play. Models that lift 2D landmarks to 3D
landmarks can adopt our method of evolving the hidden layer
heatmaps to refine intermediate data for high-confidence 3D
landmarks.

Whereas our study demonstrates enhancement in cor-
rectness, it is important to consider other critical factors.
The concern of data privacy grows, as does any other
data technology. As mentioned in Section II, extracting
key features from videos and respecting privacy is highly
encouraged. It is also true that identifiable information
may be temporarily cached or stored permanently for data
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collection. Therefore, an effort to anonymize vision data is
necessary. Some notable works are face blurring [72], use of
an IR camera to remove facial region on an RGB image [73],
and a first-person perspective wearable camera [74].

As diverse information can be retrieved in a multi-
sensor approach, researchers focus on developing fusion
systems. However, the system must use efficient methods to
connect the sensors and handle the input rate. As previously
mentioned, Xu et al. conducted research series on developing
a sensor-based fall detection system [34], [36]. The first
research [34] used the fusion-sensor approach by combining
gyroscope and accelerometer sensor data. In their follow-
up research [36], however, they removed the gyroscope
sensor as they focused on optimizing their model. Therefore,
further research is necessary to develop systems that process
multi-modal data efficiently.

The works mentioned so far fall in the category of
fall detection, where falling accidents are spotted as they
happen [75]. There are other categories, namely fall preven-
tion and fall protection [76]. Fall prevention is a category
of methods to prevent falls, such as exercising, cognitive
training, and removing environmental hazards [77]. Fall
protection prevents injury from fall accidents by installing
handrail for the person to grab onto [78] and inflating a
mobile airbag when the person is falling [79]. As technology
progresses, designing edge devices that encompass all these
categories will be highly advantageous.

Having mentioned the limitations and future directions,
we address the remaining challenges and points to further
enhance our proposed system. We have examined the
enhancement of pose estimation and fall detection with the
basic Kalman filter. However, given the nature of human
movements as having both linear and nonlinear aspects,
filters that handle nonlinear systems can be used instead of
the basic linear filter. This will effectively estimate sudden
movements of the limbs, and more importantly, the sudden
falling actions in accidents.

Also, we have designed our adaptive functionality by
applying confidence scores of pose estimation on the
measurement covariance matrix for robustness in different
input data sources for pose estimation. Whereas this works,
other advanced adaptive algorithms can also be applied
for the measurement and the process covariance matrix.
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These algorithms can be used to increase our model’s
performance or compared against our confidence-based
adaptive algorithm.

Finally, the current approach detects only the falling
individuals. When the accident happens, there may be other
people willing to help the fallen person recover or paramedics
who provide medical care when the accident has been
reported. These individuals will likely get close to the
ground, which may result in another fall detection. For a
precise accident report, our algorithm can be modified to
use a different distribution statistic to allow the detection
of the assisting people. Survey and analysis of datasets
containing multi-class labels of injured, bystanders, and
assisting individuals will be conducted. A request for nursing
home data collection has been filed to the Institutional
Review Board of Hongik University Industry-Academic
Cooperation Foundation.

VI. CONCLUSION

Human fall detection is crucial for a healthy life, especially
for elderly people. In this paper, we have proposed the
simple multi-person fall detection model for fall accident
detection in live streams. This was done by inferencing
landmarks on people from the 3D Lightweight OpenPose,
applying the Kalman filter with confidence scores from the
pose estimation for increased correctness and adaptability
in landmark detection, using object tracking to track and
label multiple landmark sets, and calculating the state of
fall or non-fall from a series of calculations. This model
achieved an F1-score of 0.944 in the multi-person setup and,
for the single-person setup, 0.933 which has minimal speed
loss from our previous single-person fall detection model.
In the future, we will evaluate the performance of this model
in real nursing environments with identification of assisting
individuals for precise reporting of the accident, implement
the extended or unscented Kalman Filter for the robustness
in nonlinear motion, conduct a comparison study on different
adaptive algorithms, and expand the detection algorithm to
process sound that is made when a falling accident occurs for
multi-modality.
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