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Abstract 

 
Recently, there has been a significant interest in AI and software in both academic and industrial areas. However, in 
this moment, no one is concerned with validating AI software, such as reinforcement learning models, which may 
be particularly challenging. To address this issue, we propose our Scenario-based Modeling in AI Software 
Validation mechanism, which incorporates concepts from state machine diagrams, Markov Decision Processes 
(MDPs), stochastic state decision processes, and scenario-based integration testing. This mechanism enhances 
probabilistic modeling, which defines all possible scenarios on AI software and explicitly represents probability 
and reward values on the edges and nodes. Then we convert the scenario-based tree with it to adapt the priority of 
all possible scenario paths. Finally, we generate sequential event flows, such as test scripts, and validate the AI 
model with them. Through this, it may offer an effective method to systematically validate all available scenarios 
for AI Software and increase testing productivity. Although there is currently a significant manual effort and 
resource constraint at one step of scenario definition and transformation, it is expected that we will improve the 
validation process through the development of automation techniques and new coverage measurements. 
 
 
Keywords: AI Software Validation, Scenario-based Modeling, Markov Decision Process 
 

1. Introduction 
In the field of software engineering, the 

importance of AI technologies, such as "AI for 
SE," has recently been emphasized. Research on 
applying AI technologies, either partially or 
entirely, beyond traditional manual testing 
methods, is actively underway in the software 
verification stage [1]. However, AI scientists 
tend to focus primarily on improving model 
verification performance and accuracy. Research 
on the Validation of AI software in the field of 
software engineering remains insufficient [2]. In 
particular, while supervised learning is easy to 
verify because the dataset includes answers, 

reinforcement learning faces a fundamental 
challenge in identifying optimal inputs and 
confirming results, making the validation of 
software with reinforcement learning models 
essential [3]. The premise of traditional software 
testing methodologies is the consistency of 
expected results for the same input. However, 
reinforcement learning-based AI software is 
challenging to validate with these existing 
methods because the model's decision factors 
change dynamically [4]. 

To address these limitations, we propose a 
Scenario-based Testing method that utilizes 
scenario graphs to effectively verify the safety, 
reliability, and accuracy of AI-based software 
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equipped with reinforcement learning models 
from a software engineering perspective. 
Scenario-based testing is expected to 
comprehensively consider various situations and 
interactions that can occur in complex and 
dynamic reinforcement learning environments, 
thereby enabling the systematic detection and 
verification of unpredictable behaviors in AI 
software. 

Chapter 2 discusses related research on AI 
software and testing methods. Chapter 3 
introduces the scenario-based modeling 
mechanism for Scenario-based modeling in AI 
Software Validation, and Chapter 4 discusses 
conclusions and future research. 

2. Related Works 

2.1 State Machine Diagram 
Mealy and Moore-based State Machine 

Diagrams (SMD) are modeling techniques that 
visually represent the possible states of a system 
or object and the transitions between those states.  

 
Fig. 1. Mealy & Moore State Machine Diagram 

 
Mealy & Moore machines, defined as M= 

(S,Σ,O,δ,λ,s0), share commonalities but differ in 
their output functions as follows: 

(1) λ:S×Σ→O (depends on current state & input)  

(2) λ:S→O (depends only on the current state) 

As shown in Fig. 1, SMDs demonstrate how a 
system changes states and responds when a 
specific event occurs, serving as an essential tool 
for analyzing and designing software system 
behavior [5]. In traditional software validation, 
SMDs have been used to explore all possible 
paths of a system and derive test cases for 
verifying expected behaviors in each state and 
transition [6]. 

2.2 Markov Decision Process 
The Markov Decision Process (MDP) is a 
framework for mathematically modeling 
sequential decision-making problems, serving as 
the theoretical foundation for reinforcement 
learning. An MDP consists of five core elements: 
a set of states (S), a set of actions (A), transition 
probabilities (P), rewards (R), and a discount 
factor (γ). Fig. 2 illustrates the Markov Decision 
Process [7]. 

 
Fig. 2. Markov Decision Process (MDP) 

 

(3) MDP = (S, A, P, R, γ), s∈ S, a∈ A, (0≤γ≤1),  

(4) P(s′∣s,a)=P[St+1=s′∣St=s,At=a] 

(5) R(s,a)=E[Rt+1∣St=s,At=a] 

When an agent takes an action (At) in a 
specific state (St), the environment transitions to 
a new state (St+1) and provides a corresponding 
reward (Rt+1) to the agent. At this time, the next 
state (St+1) depends only on the current state (St) 
and action (At), following the Markov Property, 
which states it is independent of past states. The 
discount factor (γ) represents the present value of 
future rewards and has a value between 0 and 1. 
This value determines whether the agent places a 
greater emphasis on immediate rewards or future 
rewards. As γ approaches 0, the agent focuses 
more on immediate rewards, while as it 
approaches 1, it makes decisions considering 
future rewards from a long-term perspective. 

2.3 Stochastic State Decision Process 
The Stochastic State Decision Process (SSDP) 

is an approach that analyzes and models how a 
system makes decisions among various states, 
incorporating stochastic elements. It consists of 
five components: a finite set of events (Σ), a 
finite set of states (S), a state transition function 
(g), an initial state (S0), and a set of final states 
(F). 

Σ: A finite set of events. S: A finite set of states.  

g: A state transition function, g: S×Σ→ff(E), where ff is a 
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random function, S=∬(Ψ, Gc) and E⊆E, and E is a set of 
events.  

F: A set of final states, F ⊆ S. S0: An initial state, s0 ∈ S.   

Fig. 3 is an example of a Stochastic-based 
State Diagram. Each state transition is defined in 
the form of [E/Gc/A/P], including a probability 
weight value (P) in addition to the existing event 
(E), guard condition (Gc), and action (A), which 
accurately reflects the system's probabilistic 
characteristics and enhances simulation accuracy. 
Furthermore, it improves the dynamic 
characteristics and uncertainty in embedded 
software system modeling [8]. 

 

Fig. 3. Stochastic-based State Diagram 

2.4 Scenario-based Integration Testing 
In object-oriented software development, the 

adaptive use case methodology for improving the 
efficiency of scenario-based integration testing 
integrates the software design, development, and 
testing processes through a series of algorithmic 
transformations, generating test plans at the 
design stage [9]. 

 
Fig. 4. Use Case Action Matrix 

 

Fig. 5. Action Matrix for Test Plan 

The Use Case Action Matrix explains 
executable scenarios composed of 'action units'. 
This clarifies the execution path by numerically 
indicating specific operational steps within a 
scenario. Fig. 4 is an example of a Use Case 
Action Matrix. Based on the list extracted from 
Fig. 4, an Action Matrix is created, and the 
Graph is verified and improved. Additionally, 
applying Musa's operational profile concept to 
optimize the scenario execution order enhances 
test productivity by utilizing software test 
metrics and effectively provides test 
prioritization at the design stage [10]. 

3. Scenario-based modeling in AI 
Software Validation  

This chapter introduces the Scenario-Based 
Model (SBM) for validating AI software and 
proposes a 6-step procedure for a scenario-based 
testing methodology. For explanatory purposes, 
the method is described based on an AI system 
utilizing a reinforcement learning model. 

 

Fig. 6. Scenario-based Test Case Generation 
Mechanism for validating AI Software  

 
First, diverse operating environment scenarios 

for validating AI software are defined, as shown 
in Fig. 6. Next, these scenarios are refined using 
a decision table to clarify logical branching 
points and condition-action relationships. The 
refined scenarios are then transformed into a tree 
structure to visualize complex decision-making 
flows. In this tree structure, the 'states' of the 
reinforcement learning agent become nodes, and 
'actions' become edges. Subsequently, test cases 
are generated based on this tree structure and 
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probability values, and the generated test cases 
are converted into sequential event lists 
executable in a simulation environment. Finally, 
the generated sequential event list is applied to 
the actual simulation environment to confirm 
whether the reinforcement learning model 
selects the correct action unit under specific 
conditions. Furthermore, the AI software 
equipped with the reinforcement learning model 
is verified by checking whether the scenario 
leads to an expected 'successful termination' or 
an undesirable outcome (failure). 

3.1 Scenario-Based Model (SBM) 

 

Fig. 7. Scenario-Based Model (SBM) 
 

(6) SBM={Scenarios}, Scenarios = {S,A,P,R,γ} 

(7) s ∈ S, S = {s0, s1, … ,  sn, … , sgoal, sfailure}//state 

(8) Sfailure = ¬reach Sgoals , where   γ = -1 

(9)  a ∈ A, A = {a0, a1, …, an+1, an}  //action 

(10) P (s′∣ s, a) =P [St+1=s′∣ St=s, At=a] 

(11) R (s, a) =E [Rt+1∣St=s, At=a] 

(12) γ is an integer such that (−1≤γ≤1) and γ≠ 0. 

(13) GA→B = E [Reward for State A→B] = (PAB)⋅(RA+γRB) 

The SBM for the validation of AI software is 
defined as Eq. (6). In Fig. 7, S is the set of states, 
structured as shown in Eq. (7), and it includes 
initial states (Sinitial), intermediate states 
(Sintermediate), goal states (Sgoals), and failure states 
(Sfails). A represents the set of actions that AI 
software can perform in a specific state and is 
expressed as in Eq. (9). Eq. (10) signifies the 
state-action probability that the next state will be 
s′ when action a is performed in the current state 
s. Eq. (11) denotes the expected (E) immediate 
reward or penalty when action a is performed in 
state s; specifically, positive rewards (+) are 

assigned to actions leading to Sgoals, and 
negative rewards (penalties, -) are assigned to 
actions leading to Sfails. Lastly, γ is the Discount 
Factor, which is an integer such that (−1≤γ≤1) 
and γ≠0, as expressed in Eq. (12). This value 
indicates how much importance is given to the 
present value of future rewards. It is set as an 
integer, including negative values, based on 
SBM's specific purpose (failure) to emphasize or 
avoid certain outcomes. In a scenario, failure is 
defined as the AI software never reaching the 
goal state (Sgoals), which can be expressed as in 
Eq. (8). Finally, the expected reward for the path 
E(State A → State B) is represented as in Eq. 
(13). 

3.2 AI Software Validation Mechanism 
with SBM 

Step 1. Creation AI Software Scenario for 
Testing 

In Step 1, various anticipated operating 
environment scenarios are defined for the 
functional verification of AI software equipped 
with reinforcement learning models. 

 

Fig. 8. Initial State Diagram 
 

A scenario describes the process of achieving 
a system's functional goals and visually 
represents the interactions between the system 
and its external environment as a diagram, as 
shown in Fig. 8. Each scenario elaborates on the 
environment, states, and action-based system 
interactions necessary to achieve the software's 
goals. 

Step 2. Refine Scenarios with Decision Table 

Fig. 9. Initial Scenario Diagram 
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In Step 2, the scenarios generated in Step 1 are 
refined based on logical branching points and the 
interaction relationships of each state, utilizing a 
decision table as shown in Fig. 9. This method 
helps to structure the system's internal 
decision-making logic and define system 
behavior according to various conditions. 

Step 3. Convert Scenario-based Tree with Graph 

 
Fig. 10. Scenario Transition Tree 

 

In Step 3, the refined scenarios are 
transformed into a tree structure that includes 
common starting points and branching points. 
Each node of this tree represents a 'state' of the 
Reinforcement Learning (RL) Agent that 
constitutes the scenario, and the edges represent 
'actions' between the Agent's states. Additionally, 
as shown in Fig. 10, the Stochastic method is 
used to denote frequency-based probability 
values for 'action' occurrences on these edges, 
explicitly indicating the agent's action selection 
probability in uncertain environments.  

Fig. 11. Scenario-based Test Case 

Fig. 11 shows a scenario-based transition tree 
with the expected rewards calculation for each 
scenario. This tree structure not only visually 
clarifies the various action sequences that an RL 
system can perform and their results, but also 
helps optimize the testing of RL-based AI 
software by allowing the identification of the 
importance of each action choice. 

Step 4. Generate Scenario-based Test Cases 

Based on the tree structure transformed in Step 
3 and the probability values assigned to each 
edge, test cases are generated, as shown in Fig. 
12. These test cases include initial conditions, 
input values, and expected system behaviors and 
results, enabling the reproduction of a specific 
scenario in a simulation environment. 

 

Fig. 12. Scenario-based Test Case 
 

Step 5. Generate a Sequential Event List with Test Cases 

Step 5 transforms the Test Cases defined in Step 
4 into a 'sequential event list' executable in a 
simulation environment, as shown in Fig. 13.  
 

 
 

Fig. 13. Scenario-based Event List 
 

This list assists in test execution by thoroughly 
defining the occurrence of external 
environmental events over time and the AI 
Software model's response to them. 

Step 6. Validate AI software with Sequential Event List 

The generated sequential event list is applied 
to the actual simulation environment to validate 
the AI software, which is equipped with a 
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reinforcement learning model. In this process, it 
is confirmed whether the agent selects the correct 
'action unit' under specific conditions, and 
whether the scenario leads to an expected 
'successful termination (success)' or an 
'undesirable outcome (failure)'. 

4. Conclusions 
This paper proposes an SBM validation 

mechanism for AI software to address the 
difficulties in AI software validation. The 
proposed mechanism defines an SBM method by 
adopting the concept of a Markov Decision 
Process and Scenario-based Integration 
testing[9], and explicitly classifies the state set 
into initial, intermediate, goal, and failure states. 
It extends the discount factor (γ) to integers to 
provide specialized modeling for validation. It is 
expected to enhance the AI software validation 
process by developing automation techniques 
that reduce manual effort and address resource 
constraints in scenario definition and 
transformation, as well as by establishing 
coverage measurement metrics for AI software 
validation. We hope that our method can 
contribute as a foundation for the validation of 
AI software.  
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