
The 20th Asia Pacific International
Conference on Information Science and

Technology (APIC-IST 2025)

July 06-09, 2025, SAii Laguna Resorts, Phuket, Thailand

Outstanding Paper Award
has been awarded for the paper entitled

“Scenario-based Modeling in AI Software Validation“

by

Janghwan Kim (Hongik Univ., ROK)

Kidu Kim (TTA, ROK)

Hyun Seung Son (Mokpo National Univ., ROK)

R. Young Chul Kim (Hongik Univ., ROK)

Chang Gyoon Lim, Ph.D.

APIC-IST 2025 Conference Chair

The 20th Asia Pacific International Conference
on Information Science and Technology

(APIC-IST 2025)

July 06-09, 2025, SAii Laguna Resorts, Phuket, Thailand
http://www.apicist.org

Proceedings of APIC-IST 2025

KOREAN SOCIETY FOR INTERNET INFORMATION

| Organized by |

Korean Society for Internet Information (KSII)

http://apicist.org/2025

ISSN 2093-0542

Contents

2-1
An Applied Practice on Software Quality Measurement Mechanism
based on Non-Caching Iteration-Augmented Generation
Jinmo Yang (Hongik Univ., ROK), Chansol Park (Wisenut Inc.,
ROK), R. Young Chul Kim (Hongik Univ., ROK)

26-31

2-2 Automatic Requirements Registration Mechanism
Yejin Jin, R. Young Chul Kim (Hongik Univ., ROK) 32-36

2-3
Developing a RAG-based Intelligent Chatbot using Dify and Ollama:
Focusing on educating Developers on the LMS Environment
Jaeho Kim, Ji Hoon Kong, Ki Du Kim, R. Young Chul Kim (Hongik
Univ., ROK)

37-40

2-4
Generating C3Tree Model with Non-Conditional Korean
Requirements Specification for Cause-Effect Graph
Woosung Jang, R. Young Chul Kim (Hongik Univ., ROK)

41-46

2-5
Scenario-based Modeling in AI Software Validation
Janghwan Kim (Hongik Univ., ROK), Kidu Kim (TTA, ROK), Hyun
Seung Son (Mokpo National Univ., ROK), R. Young Chul Kim
(Hongik Univ., ROK)

47-52

2-6

Best Practices in Designing a Multi-Persona AI Avatar Platform
for Solving Creative Problems
Chaeyun Seo, Sanggyoon Kim, Dongnyeon Kim, Chaeyoung Yong,
Jungmin Shon, Jihoon Kong, Janghwan Kim, R. Young Chul Kim
(Hongik Univ., ROK)

53-56

3-1
Relationship between Frontend and Backend for Web-based Fishing
Vessel Design Platform
Juhyoung Sung, Kyoungwon Park, Kiwon Kwon, Byoungchul Song
(KETI, ROK)

57-58

3-2
An Automated Water Flow Control System for Aquaculture Tanks
Juhyoung Sung, Sungyoon Cho, Yangseob Kim, Kiwon Kwon (KETI,
ROK)

59-60

KSII The 20th Asia Pacific International Conference on Information Science and Technology(APIC-IST) 2025.
Copyright ⓒ 2025 KSII 47

This research was conducted with the support of the Korea Creative Content Agency (Project Name: Artificial
Intelligence-Based Interactive Multimodal Interactive Storytelling 3D Scene Authoring Technology Development,
Project Number: RS-2023-00227917, Contribution Rate: 100%) and the Korea Research Foundation's four, Brain
Korea 21 (Project Name: Ultra-Distributed Autonomous Computing Service Technology Research Team, Project
Number: 202003520005).

Scenario-based Modeling in AI Software
Validation

Janghwan Kim1, Kidu Kim2, Hyun Seung Son3, and R. Young Chul Kim1*

1 Department of Software and Communications Engineering, Hongik University Seoul, South Korea
2 AI Infrastructure Team, Telecommunications Technology Association, Seoul, South Korea
3 Department of Computer Engineering, Mokpo National University, Mokpo, South Korea,

[e-mail: lentoconstante@hongik.ac.kr, kdkim@tta.or.kr, hson@mnu.ac.kr, bob@hongik.ac.kr]
*Corresponding author: R. Young Chul Kim

Abstract

Recently, there has been a significant interest in AI and software in both academic and industrial areas. However, in
this moment, no one is concerned with validating AI software, such as reinforcement learning models, which may
be particularly challenging. To address this issue, we propose our Scenario-based Modeling in AI Software
Validation mechanism, which incorporates concepts from state machine diagrams, Markov Decision Processes
(MDPs), stochastic state decision processes, and scenario-based integration testing. This mechanism enhances
probabilistic modeling, which defines all possible scenarios on AI software and explicitly represents probability
and reward values on the edges and nodes. Then we convert the scenario-based tree with it to adapt the priority of
all possible scenario paths. Finally, we generate sequential event flows, such as test scripts, and validate the AI
model with them. Through this, it may offer an effective method to systematically validate all available scenarios
for AI Software and increase testing productivity. Although there is currently a significant manual effort and
resource constraint at one step of scenario definition and transformation, it is expected that we will improve the
validation process through the development of automation techniques and new coverage measurements.

Keywords: AI Software Validation, Scenario-based Modeling, Markov Decision Process

1. Introduction
In the field of software engineering, the

importance of AI technologies, such as "AI for
SE," has recently been emphasized. Research on
applying AI technologies, either partially or
entirely, beyond traditional manual testing
methods, is actively underway in the software
verification stage [1]. However, AI scientists
tend to focus primarily on improving model
verification performance and accuracy. Research
on the Validation of AI software in the field of
software engineering remains insufficient [2]. In
particular, while supervised learning is easy to
verify because the dataset includes answers,

reinforcement learning faces a fundamental
challenge in identifying optimal inputs and
confirming results, making the validation of
software with reinforcement learning models
essential [3]. The premise of traditional software
testing methodologies is the consistency of
expected results for the same input. However,
reinforcement learning-based AI software is
challenging to validate with these existing
methods because the model's decision factors
change dynamically [4].

To address these limitations, we propose a
Scenario-based Testing method that utilizes
scenario graphs to effectively verify the safety,
reliability, and accuracy of AI-based software

48 Janghwan Kim et al.: Scenario-based Modeling in AI Software Validation

equipped with reinforcement learning models
from a software engineering perspective.
Scenario-based testing is expected to
comprehensively consider various situations and
interactions that can occur in complex and
dynamic reinforcement learning environments,
thereby enabling the systematic detection and
verification of unpredictable behaviors in AI
software.

Chapter 2 discusses related research on AI
software and testing methods. Chapter 3
introduces the scenario-based modeling
mechanism for Scenario-based modeling in AI
Software Validation, and Chapter 4 discusses
conclusions and future research.

2. Related Works

2.1 State Machine Diagram
Mealy and Moore-based State Machine

Diagrams (SMD) are modeling techniques that
visually represent the possible states of a system
or object and the transitions between those states.

Fig. 1. Mealy & Moore State Machine Diagram

Mealy & Moore machines, defined as M=

(S,Σ,O,δ,λ,s0), share commonalities but differ in
their output functions as follows:

(1) λ:S×Σ→O (depends on current state & input)

(2) λ:S→O (depends only on the current state)

As shown in Fig. 1, SMDs demonstrate how a
system changes states and responds when a
specific event occurs, serving as an essential tool
for analyzing and designing software system
behavior [5]. In traditional software validation,
SMDs have been used to explore all possible
paths of a system and derive test cases for
verifying expected behaviors in each state and
transition [6].

2.2 Markov Decision Process
The Markov Decision Process (MDP) is a
framework for mathematically modeling
sequential decision-making problems, serving as
the theoretical foundation for reinforcement
learning. An MDP consists of five core elements:
a set of states (S), a set of actions (A), transition
probabilities (P), rewards (R), and a discount
factor (γ). Fig. 2 illustrates the Markov Decision
Process [7].

Fig. 2. Markov Decision Process (MDP)

(3) MDP = (S, A, P, R, γ), s∈ S, a∈ A, (0≤γ≤1),

(4) P(s′∣s,a)=P[St+1=s′∣St=s,At=a]

(5) R(s,a)=E[Rt+1∣St=s,At=a]

When an agent takes an action (At) in a
specific state (St), the environment transitions to
a new state (St+1) and provides a corresponding
reward (Rt+1) to the agent. At this time, the next
state (St+1) depends only on the current state (St)
and action (At), following the Markov Property,
which states it is independent of past states. The
discount factor (γ) represents the present value of
future rewards and has a value between 0 and 1.
This value determines whether the agent places a
greater emphasis on immediate rewards or future
rewards. As γ approaches 0, the agent focuses
more on immediate rewards, while as it
approaches 1, it makes decisions considering
future rewards from a long-term perspective.

2.3 Stochastic State Decision Process
The Stochastic State Decision Process (SSDP)

is an approach that analyzes and models how a
system makes decisions among various states,
incorporating stochastic elements. It consists of
five components: a finite set of events (Σ), a
finite set of states (S), a state transition function
(g), an initial state (S0), and a set of final states
(F).

Σ: A finite set of events. S: A finite set of states.

g: A state transition function, g: S×Σ→ff(E), where ff is a

The 20th Asia Pacific International Conference on Information Science and Technology(APIC-IST) 2025, July 2025 49

random function, S=∬(Ψ, Gc) and E⊆E, and E is a set of
events.

F: A set of final states, F ⊆ S. S0: An initial state, s0 ∈ S.

Fig. 3 is an example of a Stochastic-based
State Diagram. Each state transition is defined in
the form of [E/Gc/A/P], including a probability
weight value (P) in addition to the existing event
(E), guard condition (Gc), and action (A), which
accurately reflects the system's probabilistic
characteristics and enhances simulation accuracy.
Furthermore, it improves the dynamic
characteristics and uncertainty in embedded
software system modeling [8].

Fig. 3. Stochastic-based State Diagram

2.4 Scenario-based Integration Testing
In object-oriented software development, the

adaptive use case methodology for improving the
efficiency of scenario-based integration testing
integrates the software design, development, and
testing processes through a series of algorithmic
transformations, generating test plans at the
design stage [9].

Fig. 4. Use Case Action Matrix

Fig. 5. Action Matrix for Test Plan

The Use Case Action Matrix explains
executable scenarios composed of 'action units'.
This clarifies the execution path by numerically
indicating specific operational steps within a
scenario. Fig. 4 is an example of a Use Case
Action Matrix. Based on the list extracted from
Fig. 4, an Action Matrix is created, and the
Graph is verified and improved. Additionally,
applying Musa's operational profile concept to
optimize the scenario execution order enhances
test productivity by utilizing software test
metrics and effectively provides test
prioritization at the design stage [10].

3. Scenario-based modeling in AI
Software Validation

This chapter introduces the Scenario-Based
Model (SBM) for validating AI software and
proposes a 6-step procedure for a scenario-based
testing methodology. For explanatory purposes,
the method is described based on an AI system
utilizing a reinforcement learning model.

Fig. 6. Scenario-based Test Case Generation
Mechanism for validating AI Software

First, diverse operating environment scenarios

for validating AI software are defined, as shown
in Fig. 6. Next, these scenarios are refined using
a decision table to clarify logical branching
points and condition-action relationships. The
refined scenarios are then transformed into a tree
structure to visualize complex decision-making
flows. In this tree structure, the 'states' of the
reinforcement learning agent become nodes, and
'actions' become edges. Subsequently, test cases
are generated based on this tree structure and

50 Janghwan Kim et al.: Scenario-based Modeling in AI Software Validation

probability values, and the generated test cases
are converted into sequential event lists
executable in a simulation environment. Finally,
the generated sequential event list is applied to
the actual simulation environment to confirm
whether the reinforcement learning model
selects the correct action unit under specific
conditions. Furthermore, the AI software
equipped with the reinforcement learning model
is verified by checking whether the scenario
leads to an expected 'successful termination' or
an undesirable outcome (failure).

3.1 Scenario-Based Model (SBM)

Fig. 7. Scenario-Based Model (SBM)

(6) SBM={Scenarios}, Scenarios = {S,A,P,R,γ}

(7) s ∈ S, S = {s0, s1, … , sn, … , sgoal, sfailure}//state

(8) Sfailure = ¬reach Sgoals , where γ = -1

(9) a ∈ A, A = {a0, a1, …, an+1, an} //action

(10) P (s′∣ s, a) =P [St+1=s′∣ St=s, At=a]

(11) R (s, a) =E [Rt+1∣St=s, At=a]

(12) γ is an integer such that (−1≤γ≤1) and γ≠ 0.

(13) GA→B = E [Reward for State A→B] = (PAB)⋅(RA+γRB)

The SBM for the validation of AI software is
defined as Eq. (6). In Fig. 7, S is the set of states,
structured as shown in Eq. (7), and it includes
initial states (Sinitial), intermediate states
(Sintermediate), goal states (Sgoals), and failure states
(Sfails). A represents the set of actions that AI
software can perform in a specific state and is
expressed as in Eq. (9). Eq. (10) signifies the
state-action probability that the next state will be
s′ when action a is performed in the current state
s. Eq. (11) denotes the expected (E) immediate
reward or penalty when action a is performed in
state s; specifically, positive rewards (+) are

assigned to actions leading to Sgoals, and
negative rewards (penalties, -) are assigned to
actions leading to Sfails. Lastly, γ is the Discount
Factor, which is an integer such that (−1≤γ≤1)
and γ≠0, as expressed in Eq. (12). This value
indicates how much importance is given to the
present value of future rewards. It is set as an
integer, including negative values, based on
SBM's specific purpose (failure) to emphasize or
avoid certain outcomes. In a scenario, failure is
defined as the AI software never reaching the
goal state (Sgoals), which can be expressed as in
Eq. (8). Finally, the expected reward for the path
E(State A → State B) is represented as in Eq.
(13).

3.2 AI Software Validation Mechanism
with SBM

Step 1. Creation AI Software Scenario for
Testing

In Step 1, various anticipated operating
environment scenarios are defined for the
functional verification of AI software equipped
with reinforcement learning models.

Fig. 8. Initial State Diagram

A scenario describes the process of achieving
a system's functional goals and visually
represents the interactions between the system
and its external environment as a diagram, as
shown in Fig. 8. Each scenario elaborates on the
environment, states, and action-based system
interactions necessary to achieve the software's
goals.

Step 2. Refine Scenarios with Decision Table

Fig. 9. Initial Scenario Diagram

The 20th Asia Pacific International Conference on Information Science and Technology(APIC-IST) 2025, July 2025 51

In Step 2, the scenarios generated in Step 1 are
refined based on logical branching points and the
interaction relationships of each state, utilizing a
decision table as shown in Fig. 9. This method
helps to structure the system's internal
decision-making logic and define system
behavior according to various conditions.

Step 3. Convert Scenario-based Tree with Graph

Fig. 10. Scenario Transition Tree

In Step 3, the refined scenarios are
transformed into a tree structure that includes
common starting points and branching points.
Each node of this tree represents a 'state' of the
Reinforcement Learning (RL) Agent that
constitutes the scenario, and the edges represent
'actions' between the Agent's states. Additionally,
as shown in Fig. 10, the Stochastic method is
used to denote frequency-based probability
values for 'action' occurrences on these edges,
explicitly indicating the agent's action selection
probability in uncertain environments.

Fig. 11. Scenario-based Test Case

Fig. 11 shows a scenario-based transition tree
with the expected rewards calculation for each
scenario. This tree structure not only visually
clarifies the various action sequences that an RL
system can perform and their results, but also
helps optimize the testing of RL-based AI
software by allowing the identification of the
importance of each action choice.

Step 4. Generate Scenario-based Test Cases

Based on the tree structure transformed in Step
3 and the probability values assigned to each
edge, test cases are generated, as shown in Fig.
12. These test cases include initial conditions,
input values, and expected system behaviors and
results, enabling the reproduction of a specific
scenario in a simulation environment.

Fig. 12. Scenario-based Test Case

Step 5. Generate a Sequential Event List with Test Cases

Step 5 transforms the Test Cases defined in Step
4 into a 'sequential event list' executable in a
simulation environment, as shown in Fig. 13.

Fig. 13. Scenario-based Event List

This list assists in test execution by thoroughly
defining the occurrence of external
environmental events over time and the AI
Software model's response to them.

Step 6. Validate AI software with Sequential Event List

The generated sequential event list is applied
to the actual simulation environment to validate
the AI software, which is equipped with a

52 Janghwan Kim et al.: Scenario-based Modeling in AI Software Validation

reinforcement learning model. In this process, it
is confirmed whether the agent selects the correct
'action unit' under specific conditions, and
whether the scenario leads to an expected
'successful termination (success)' or an
'undesirable outcome (failure)'.

4. Conclusions
This paper proposes an SBM validation

mechanism for AI software to address the
difficulties in AI software validation. The
proposed mechanism defines an SBM method by
adopting the concept of a Markov Decision
Process and Scenario-based Integration
testing[9], and explicitly classifies the state set
into initial, intermediate, goal, and failure states.
It extends the discount factor (γ) to integers to
provide specialized modeling for validation. It is
expected to enhance the AI software validation
process by developing automation techniques
that reduce manual effort and address resource
constraints in scenario definition and
transformation, as well as by establishing
coverage measurement metrics for AI software
validation. We hope that our method can
contribute as a foundation for the validation of
AI software.

References
[1] C. Tao, J. Gao and T. Wang, “Testing and

Quality Validation for AI
Software–Perspectives, Issues, and
Practices,” IEEE Access, vol.7,
pp.120164-120175, 2019. doi:
10.1109/ACCESS.2019.2937107.

[2] J. Gao, C. Tao, D. Jie and S. Lu, “Invited
Paper: What is AI Software Testing? and
Why,” in Proc. of 2019 IEEE International
Conference on Service-Oriented System
Engineering (SOSE), pp.27-2709, San
Francisco, CA, USA, 2019. doi:
10.1109/SOSE.2019.00015.

[3] S. Jo, R. Kwon, and K. Kwon, “Safety
assessment method of reinforcement
learning model: Autonomous driving case
study,” Journal of the Korea Information
Technology Society, vol.21, no.8,
pp.165-174, 2023. doi:
10.14801/jkiit.2023.21.8.165

[4] A. J. Singh, & A. Easwaran, “Pas: Probably
approximate safety verification of
reinforcement learning policy using
scenario optimization,” in Proc. of the 23rd
International Conference on Autonomous
Agents and Multiagent Systems,
pp.1745-1753, May 2024.

[5] Edward F. Moore, “Gedanken-experiments
on Sequential Machines,” Automata Studies,
Annals of Mathematical Studies, no.34,
pp.129-153, 1956.

[6] G. H. Mealy, “A Method for Synthesizing
Sequential Circuits,” Bell System Tech
Journal, vol.34, 1955.

[7] M. L. Puterman, “Markov decision
processes,” Handbooks in operations
research and management science, vol.2,
pp.331-434, 1990.

[8] S. Moon, “A Study on Modeling and
Simulation for Embedded Software
Systems” (Master's Thesis) Graduate
School, Hongik University, Seoul, 2007.

[9] R. Y. Kim & C. R. Carlson,
“Scenario-based integration testing for
object-oriented software development.”
in Proc. Eighth Asian Test Symposium
(ATS'99), pp.283-288, IEEE, 1999.

[10] J. D. Musa, “Operational profiles in
software-reliability engineering,” IEEE
software, vol.10, no.2, pp.14-32, 1993.

	Proceedings_of_APIC-IST_2025
	Session 2
	2-5 Scenario-based Modeling in AI Software Validation

