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Abstract 

 
In the era of information and data technology, it is crucial to ensure that software products meet quality standards 

and to be considered "good" software. Nowadays, it is almost impossible to find domains where AI applications are 

not being researched. However, as AI-based software inherently contains uncertainties due to the nature of AI, 

rigorous verification and validation are critical. We propose a novel method of measuring code quality by providing 

information on quality measurement for comprehensive evaluation, using non-caching iteration-augmented 

generation (NCIAG) method. Whereas traditional retrieval-augmented generation (RAG) searches for similarity 

match on the user query and the information to be provided, we design the workflow to iteratively provide relevant 

information, without caching, thereby increasing AI’s focus on the current code metric measurement. For future 

work, we aim to build a software visualization tool that runs our code analyzer. 
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1. Introduction 

Software quality is the degree to which a 

software product meets the specified 

requirements and user expectations [1]. This 

includes various characteristics, such as 

functional suitability, reliability, usability, etc. 

As the current and future world revolves around 

AI, software of different varieties and capacities 

are produced with generative AI. Generative AI 

is normally trained with large corpus of data, 

which may contain biased, incorrect, or outdated 

information [2]. The resulting AI inherently 

generates outputs with less than 100 % 

confidence, indicating that the need for verifying 

and validating the software is of utmost 

importance. 

Traditionally, measurements on software 

quality were collected with manual calculations 

and rule-based analyzers implemented by 

developers. Nowadays, AI measures software 

quality from the input, by learning the patterns 

within the software development process as input 

and understanding high-level 

instruction—prompts. Users do not design 

algorithms but provide data for the AI to capture 

the important features for making decisions. As 

software analyzers are software themselves, the 

advancement of these tools follows the shift of 
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software paradigms [3]. In Software 1.0, humans 

write the software from the development process 

[3]. In Software 2.0, parts of the software are 

trained with and captured by AI, optimized for 

predictions [4]. In Software 3.0, requirements for 

the software are given as input to the AI and the 

source code is produced [5]. 

In our earlier work, we trained the 

CodeBERT model with the transfer learning 

method to detect Common Weakness 

Enumeration (CWE), lack of cohesion in 

methods (LCOM), and response for a class 

(RFC) of programs written in the java language 

or similar languages, or both [6,7]. This method 

is from the Software 2.0 paradigm, which 

requires fine-tuning of the pretrained CodeBERT 

model for specific code metric. 

To progress further and leverage recent AI 

mechanisms for generalization, interoperability, 

and better performance, we propose the software 

quality measurement mechanism with 

non-caching iteration-augmented generation 

(NCIAG). Our novel NCIAG is based on 

retrieval-augmented generation (RAG) [8], 

where the retriever is replaced with iteration. 

From the knowledge base of embedded 

documents that contain the explanation and 

measurement algorithms of the quality metrics of 

our interest, NCIAG can focus on the specific 

quality metric in each iteration to measure the 

quality with high performance. 

Interestingly, the analysis mechanisms that 

we mention are AI systems themselves. It is 

ironic that we use AI to verify AI, where AI 

possesses uncertainty. This is an important note 

to the paradox of the current AI analysis grounds. 

AI can be a source of both power and potential 

errors, which further promotes the development 

of AI techniques to improve AI usage and 

decrease errors. 

The rest of the paper is as follows. Section 2 

reviews the related works. Section 3 presents 

software quality measurement with our NCIAG. 

Section 4 shows the applied practice of the 

proposed mechanism. Finally, Section 5 

mentions the conclusion. 

2. Related Works 

2.1 Rule-based Code Analysis 

The traditional method for measuring software 

quality is for humans or algorithms designed by 

humans to measure the quality of the software [9, 

10]. Specifically for code metrics, developers 

extract abstract syntax tree (AST) of the code and 

implement analyzers that use this parsed 

information for the assessment. Gorchakov et al. 

[11] proposed an analyzer system that computes 

educational complexity of Python code from the 

Python AST that can be used in programming 

courses for automatic grading. 

Initially for this context, we built a toolchain 

that extracts AST of various languages and stores 

the parsed information into database [12,13,14]. 

With rule-based code metric measurement 

methods, our tool extracts metric scores from the 

lookup tables. Because the system is 

modularized, more programming languages can 

be added for analysis, given that the 

measurement methods are defined. 

Rule-based methods can be trusted with 

100 % confidence if they are completely 

implemented. However, implementation often 

requires deep understanding of the syntax and 

the measurement procedure. Moreover, AST can 

vary greatly across significantly different 

programming languages, requiring a substantial 

rewrite to the metric measurement method. 

2.2 AI Models as Analysis Algorithms 

AI is technology that allows computers to 

perform tasks that require human cognition [15]. 

Practically all phenomena can be represented 

with AI, including software quality assessment. 

Khan et al. [16] conducted a comprehensive 

analysis on software quality test with multiple 

machine learning algorithms. The authors used 

various machine- and deep-learning models to 

accurately predict software defects and 

determine the most significant deciding features 

in the source code. 

Advancing from rule-based approach, we 

used the CodeBERT model for static code 

analysis [6,7,17]. CodeBERT is an encoder-only 

transformer model that specialized in 

understanding code at the time of release [18]. 

Setting the model to the classification and 

regression mode [19], we trained the model from 

the input code and ground truth quality metrics to 

give quality measurements as the output. Since 

the transformer foundation model can recognize 

similar patterns of different text strings, the 

downstream CodeBERT model can train from 

the patterns of code in one language and analyze 

the quality of the code written in a similar, yet 
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different language [7]. However, as AI 

performance increases exponentially over time 

[20], the CodeBERT model can now be 

considered outdated. Additionally, methods to 

complement the AI reasoning for higher capacity 

are actively explored; engineering prompts to 

direct the AI to think about the measurement 

process and to calculate by small steps greatly 

enhances the output quality [21]. 

2.3 AI Enhancement Techniques 

Nowadays, techniques to enhance AI experience 

are announced on a daily basis. It is widely 

known that entering a concise prompt containing 

the directions for the AI to follow reduces 

hallucination and improves the quality of the 

output [21]. 

RAG systems can further increase the 

correctness of the output. These systems use a 

prebuilt knowledge base that provides 

information related to the user’s query, 

concatenates the query and the information, and 

enters the resulting data into the AI for 

generating output that is closely bound to the 

context, thus reducing the likelihood that the AI 

generates false information from its internal 

weights only [8]. 

Better advancement is that AI systems act as 

agents to complete complex user requests e.g. 

from summarizing the meeting and launching 

spreadsheets to record items discussed and the 

costs to creating the prototype of the business 

item and communicating with specialized AI to 

generate an advertising video [22]. This is a step 

forward from the previous paradigm where the 

user must actively utilize the AI outputs to 

complete the task. 

To achieve this, major AI development 

companies are announcing protocols, such as 

model context protocol (MCP) and Agent2Agent 

(A2A), for AI models and tools to have 

consistent interface and provide high 

interoperability [23,24]. Whereas it is important 

that AI quickly fulfills users’ needs, the 

correctness of the AI’s task 

completion—including the output and the 

process—needs assessment. Currently, there is 

not a unified software quality assessment method 

for these protocols [25,26]. Also, current 

software quality metrics were built on extensive 

theoretical and empirical grounds [27], which AI 

must follow to properly assess the software [28]. 

Therefore, we propose a software quality 

measurement method that uses predefined 

knowledge base of metric definitions and 

measurement processes to assess the software. 

Our main contribution is the improvement of 

software quality measurement methods from our 

previous traditional training of the legacy 

CodeBERT model to use enhancement 

techniques to reduce hallucinations. 

3. Software Quality Measurement 
with Non-Caching Iteration 

-Augmented Generation (NCIAG) 

The objective is to provide an enhanced AI 

method that reliably measures code quality. 

Code analysis is regularly conducted to measure 

software quality from constantly updating source 

 
Fig. 1. Design of AI code analyzer with non-caching iteration-augmented generation 
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code [29]. This can be automatically executed 

with a continuous integration (CI) tool, which 

builds source code, checks code quality, runs 

tests, and detects defects when the source code is 

updated or at a fixed interval (nightly) [30]. If AI 

measures the software quality with acceptable 

performance, it is wise that we provide methods 

and information to conduct code analysis. 

To achieve this, we propose and use NCIAG 

design, as shown in Fig. 1. NCIAG provides 

information for code assessment from the 

knowledge base with source code as input. Each 

document in the knowledge base contains 

information on how to calculate a single code 

quality metric. While the supply of information 

is the same as the traditional RAG mechanism, 

the similarity checks for retrieving relevant 

information are omitted. Instead, our novel 

approach uses code analysis information from 

the knowledge base until all documents are 

iterated. However, the prompt from the previous 

iteration is not cached in memory. This is an 

important design for the AI to focus on the 

current measurement only. As with are 

exhausted. on increasing the AI performance 

with augmentation for software quality 

measurement. 

Below are the steps and the explanation of 

the code analysis process with NCIAG. 

1) The AST of the source code is generated. 

This is to help the AI focus on the structure 

of the code. 

2) The AST and the code is entered into the 

code analyzer. As it is used throughout the 

whole iteration, it is embedded with the 

same embedding model as the knowledge 

base. 

3) Iteration of the code analyzer. 

A. The document corresponding to the 

current iteration index is selected and 

concatenated to the embedded code 

AST. This input block holds source 

code and current metric measurement 

information.  

B. The concatenated input is entered into 

the generative AI for analysis on the 

current code metric. The AI will read 

the source code AST and measure its 

quality as explained in the current 

quality metric information document. 

C. The AI results are accumulated. The 

accumulation style is not specified, but 

JSON is preferred for compatibility. 

4) The accumulated results are returned for a 

complete quality measurement report. 

 The CI tool integration and dashboard 

connection are out of the scope of this paper. We 

plan on developing a code visualization tool 

incorporating the CI tool, code analysis, and the 

dashboard in our future work. 

4. A Case Study for 
Our Proposed Mechanism 

For the applied practice, we ran a single iteration 

of long method of the code smell [31] on a 

sample Python code generated with Gemini 2.5 

Flash [32]. We used the Qwen3 8B model [33] 

for the generative AI and the BGE-M3 [34] for 

the embedding model. Fig. 2 shows the code 

 
Fig. 2. Python sample code (Gemini 2.5 Flash) 

 
Fig. 3. Single iteration of code analysis 
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excerpt, and Fig. 3 shows the code analysis result. 

From the result, it can be seen that the NCIAG 

approach for software quality measurement is 

valid and promising. 

5. Conclusions 

We have proposed the software quality 

measurement method based on non-caching 

iteration-augmented generation. This method 

uses RAG-based AI enhancement technique to 

correctly assess code quality by iterating through 

documents that hold metric calculation 

information with non-caching mechanism for the 

AI to focus on current calculation. This paper is 

an applied practice on our proposed mechanism. 

Therefore, we plan on developing a complete 

module for integration with a visualization tool 

and conduct a comparison study with mature 

rule-based and our previous training-based code 

analyzers. 
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