
The 20th Asia Pacific International Conference
on Information Science and Technology

(APIC-IST 2025)

July 06-09, 2025, SAii Laguna Resorts, Phuket, Thailand
http://www.apicist.org

Proceedings of APIC-IST 2025

KOREAN SOCIETY FOR INTERNET INFORMATION

| Organized by |

Korean Society for Internet Information (KSII)

http://apicist.org/2025

ISSN 2093-0542

Contents

2-1
An Applied Practice on Software Quality Measurement Mechanism
based on Non-Caching Iteration-Augmented Generation
Jinmo Yang (Hongik Univ., ROK), Chansol Park (Wisenut Inc.,
ROK), R. Young Chul Kim (Hongik Univ., ROK)

26-31

2-2 Automatic Requirements Registration Mechanism
Yejin Jin, R. Young Chul Kim (Hongik Univ., ROK) 32-36

2-3
Developing a RAG-based Intelligent Chatbot using Dify and Ollama:
Focusing on educating Developers on the LMS Environment
Jaeho Kim, Ji Hoon Kong, Ki Du Kim, R. Young Chul Kim (Hongik
Univ., ROK)

37-40

2-4
Generating C3Tree Model with Non-Conditional Korean
Requirements Specification for Cause-Effect Graph
Woosung Jang, R. Young Chul Kim (Hongik Univ., ROK)

41-46

2-5
Scenario-based Modeling in AI Software Validation
Janghwan Kim (Hongik Univ., ROK), Kidu Kim (TTA, ROK), Hyun
Seung Son (Mokpo National Univ., ROK), R. Young Chul Kim
(Hongik Univ., ROK)

47-52

2-6

Best Practices in Designing a Multi-Persona AI Avatar Platform
for Solving Creative Problems
Chaeyun Seo, Sanggyoon Kim, Dongnyeon Kim, Chaeyoung Yong,
Jungmin Shon, Jihoon Kong, Janghwan Kim, R. Young Chul Kim
(Hongik Univ., ROK)

53-56

3-1
Relationship between Frontend and Backend for Web-based Fishing
Vessel Design Platform
Juhyoung Sung, Kyoungwon Park, Kiwon Kwon, Byoungchul Song
(KETI, ROK)

57-58

3-2
An Automated Water Flow Control System for Aquaculture Tanks
Juhyoung Sung, Sungyoon Cho, Yangseob Kim, Kiwon Kwon (KETI,
ROK)

59-60

KSII The 20th Asia Pacific International Conference on Information Science and Technology(APIC-IST) 2025.

Copyright ⓒ 2025 KSII 26

This research was conducted with the support of the Korea Creative Content Agency (Project Name: Artificial

Intelligence-Based Interactive Multimodal Interactive Storytelling 3D Scene Authoring Technology Development,

Project Number: RS-2023-00227917, Contribution Rate: 100%) and the Korea Research Foundation's four, Brain

Korea 21 (Project Name: Ultra-Distributed Autonomous Computing Service Technology Research Team, Project

Number: 202003520005).

An Applied Practice on Software Quality
Measurement Mechanism based on
Non-Caching Iteration-Augmented

Generation

Jinmo Yang1, Chansol Park2, and R. Young Chul Kim3*
1,3* SE Lab, Hongik University, Sejong, South Korea

2 Wisenut Inc., Sungnam, South Korea

[e-mail: 1yjmd2222@g.hongik.ac.kr, 2chansol53@wisenut.co.kr, 3*bob@hongik.ac.kr]
*Corresponding author: R. Young Chul Kim

Abstract

In the era of information and data technology, it is crucial to ensure that software products meet quality standards

and to be considered "good" software. Nowadays, it is almost impossible to find domains where AI applications are

not being researched. However, as AI-based software inherently contains uncertainties due to the nature of AI,

rigorous verification and validation are critical. We propose a novel method of measuring code quality by providing

information on quality measurement for comprehensive evaluation, using non-caching iteration-augmented

generation (NCIAG) method. Whereas traditional retrieval-augmented generation (RAG) searches for similarity

match on the user query and the information to be provided, we design the workflow to iteratively provide relevant

information, without caching, thereby increasing AI’s focus on the current code metric measurement. For future

work, we aim to build a software visualization tool that runs our code analyzer.

Keywords: software quality, metrics, abstract syntax tree, generative AI, retrieval-augmented generation

1. Introduction

Software quality is the degree to which a

software product meets the specified

requirements and user expectations [1]. This

includes various characteristics, such as

functional suitability, reliability, usability, etc.

As the current and future world revolves around

AI, software of different varieties and capacities

are produced with generative AI. Generative AI

is normally trained with large corpus of data,

which may contain biased, incorrect, or outdated

information [2]. The resulting AI inherently

generates outputs with less than 100 %

confidence, indicating that the need for verifying

and validating the software is of utmost

importance.

Traditionally, measurements on software

quality were collected with manual calculations

and rule-based analyzers implemented by

developers. Nowadays, AI measures software

quality from the input, by learning the patterns

within the software development process as input

and understanding high-level

instruction—prompts. Users do not design

algorithms but provide data for the AI to capture

the important features for making decisions. As

software analyzers are software themselves, the

advancement of these tools follows the shift of

The 20th Asia Pacific International Conference on Information Science and Technology(APIC-IST) 2025, July 2025 27

software paradigms [3]. In Software 1.0, humans

write the software from the development process

[3]. In Software 2.0, parts of the software are

trained with and captured by AI, optimized for

predictions [4]. In Software 3.0, requirements for

the software are given as input to the AI and the

source code is produced [5].

In our earlier work, we trained the

CodeBERT model with the transfer learning

method to detect Common Weakness

Enumeration (CWE), lack of cohesion in

methods (LCOM), and response for a class

(RFC) of programs written in the java language

or similar languages, or both [6,7]. This method

is from the Software 2.0 paradigm, which

requires fine-tuning of the pretrained CodeBERT

model for specific code metric.

To progress further and leverage recent AI

mechanisms for generalization, interoperability,

and better performance, we propose the software

quality measurement mechanism with

non-caching iteration-augmented generation

(NCIAG). Our novel NCIAG is based on

retrieval-augmented generation (RAG) [8],

where the retriever is replaced with iteration.

From the knowledge base of embedded

documents that contain the explanation and

measurement algorithms of the quality metrics of

our interest, NCIAG can focus on the specific

quality metric in each iteration to measure the

quality with high performance.

Interestingly, the analysis mechanisms that

we mention are AI systems themselves. It is

ironic that we use AI to verify AI, where AI

possesses uncertainty. This is an important note

to the paradox of the current AI analysis grounds.

AI can be a source of both power and potential

errors, which further promotes the development

of AI techniques to improve AI usage and

decrease errors.

The rest of the paper is as follows. Section 2

reviews the related works. Section 3 presents

software quality measurement with our NCIAG.

Section 4 shows the applied practice of the

proposed mechanism. Finally, Section 5

mentions the conclusion.

2. Related Works

2.1 Rule-based Code Analysis

The traditional method for measuring software

quality is for humans or algorithms designed by

humans to measure the quality of the software [9,

10]. Specifically for code metrics, developers

extract abstract syntax tree (AST) of the code and

implement analyzers that use this parsed

information for the assessment. Gorchakov et al.

[11] proposed an analyzer system that computes

educational complexity of Python code from the

Python AST that can be used in programming

courses for automatic grading.

Initially for this context, we built a toolchain

that extracts AST of various languages and stores

the parsed information into database [12,13,14].

With rule-based code metric measurement

methods, our tool extracts metric scores from the

lookup tables. Because the system is

modularized, more programming languages can

be added for analysis, given that the

measurement methods are defined.

Rule-based methods can be trusted with

100 % confidence if they are completely

implemented. However, implementation often

requires deep understanding of the syntax and

the measurement procedure. Moreover, AST can

vary greatly across significantly different

programming languages, requiring a substantial

rewrite to the metric measurement method.

2.2 AI Models as Analysis Algorithms

AI is technology that allows computers to

perform tasks that require human cognition [15].

Practically all phenomena can be represented

with AI, including software quality assessment.

Khan et al. [16] conducted a comprehensive

analysis on software quality test with multiple

machine learning algorithms. The authors used

various machine- and deep-learning models to

accurately predict software defects and

determine the most significant deciding features

in the source code.

Advancing from rule-based approach, we

used the CodeBERT model for static code

analysis [6,7,17]. CodeBERT is an encoder-only

transformer model that specialized in

understanding code at the time of release [18].

Setting the model to the classification and

regression mode [19], we trained the model from

the input code and ground truth quality metrics to

give quality measurements as the output. Since

the transformer foundation model can recognize

similar patterns of different text strings, the

downstream CodeBERT model can train from

the patterns of code in one language and analyze

the quality of the code written in a similar, yet

28 Jinmo Yang et al.: An Applied Practice on Software Quality Measurement Mechanism based on

Non-Caching Iteration-Augmented Generation

different language [7]. However, as AI

performance increases exponentially over time

[20], the CodeBERT model can now be

considered outdated. Additionally, methods to

complement the AI reasoning for higher capacity

are actively explored; engineering prompts to

direct the AI to think about the measurement

process and to calculate by small steps greatly

enhances the output quality [21].

2.3 AI Enhancement Techniques

Nowadays, techniques to enhance AI experience

are announced on a daily basis. It is widely

known that entering a concise prompt containing

the directions for the AI to follow reduces

hallucination and improves the quality of the

output [21].

RAG systems can further increase the

correctness of the output. These systems use a

prebuilt knowledge base that provides

information related to the user’s query,

concatenates the query and the information, and

enters the resulting data into the AI for

generating output that is closely bound to the

context, thus reducing the likelihood that the AI

generates false information from its internal

weights only [8].

Better advancement is that AI systems act as

agents to complete complex user requests e.g.

from summarizing the meeting and launching

spreadsheets to record items discussed and the

costs to creating the prototype of the business

item and communicating with specialized AI to

generate an advertising video [22]. This is a step

forward from the previous paradigm where the

user must actively utilize the AI outputs to

complete the task.

To achieve this, major AI development

companies are announcing protocols, such as

model context protocol (MCP) and Agent2Agent

(A2A), for AI models and tools to have

consistent interface and provide high

interoperability [23,24]. Whereas it is important

that AI quickly fulfills users’ needs, the

correctness of the AI’s task

completion—including the output and the

process—needs assessment. Currently, there is

not a unified software quality assessment method

for these protocols [25,26]. Also, current

software quality metrics were built on extensive

theoretical and empirical grounds [27], which AI

must follow to properly assess the software [28].

Therefore, we propose a software quality

measurement method that uses predefined

knowledge base of metric definitions and

measurement processes to assess the software.

Our main contribution is the improvement of

software quality measurement methods from our

previous traditional training of the legacy

CodeBERT model to use enhancement

techniques to reduce hallucinations.

3. Software Quality Measurement
with Non-Caching Iteration

-Augmented Generation (NCIAG)

The objective is to provide an enhanced AI

method that reliably measures code quality.

Code analysis is regularly conducted to measure

software quality from constantly updating source

Fig. 1. Design of AI code analyzer with non-caching iteration-augmented generation

The 20th Asia Pacific International Conference on Information Science and Technology(APIC-IST) 2025, July 2025 29

code [29]. This can be automatically executed

with a continuous integration (CI) tool, which

builds source code, checks code quality, runs

tests, and detects defects when the source code is

updated or at a fixed interval (nightly) [30]. If AI

measures the software quality with acceptable

performance, it is wise that we provide methods

and information to conduct code analysis.

To achieve this, we propose and use NCIAG

design, as shown in Fig. 1. NCIAG provides

information for code assessment from the

knowledge base with source code as input. Each

document in the knowledge base contains

information on how to calculate a single code

quality metric. While the supply of information

is the same as the traditional RAG mechanism,

the similarity checks for retrieving relevant

information are omitted. Instead, our novel

approach uses code analysis information from

the knowledge base until all documents are

iterated. However, the prompt from the previous

iteration is not cached in memory. This is an

important design for the AI to focus on the

current measurement only. As with are

exhausted. on increasing the AI performance

with augmentation for software quality

measurement.

Below are the steps and the explanation of

the code analysis process with NCIAG.

1) The AST of the source code is generated.

This is to help the AI focus on the structure

of the code.

2) The AST and the code is entered into the

code analyzer. As it is used throughout the

whole iteration, it is embedded with the

same embedding model as the knowledge

base.

3) Iteration of the code analyzer.

A. The document corresponding to the

current iteration index is selected and

concatenated to the embedded code

AST. This input block holds source

code and current metric measurement

information.

B. The concatenated input is entered into

the generative AI for analysis on the

current code metric. The AI will read

the source code AST and measure its

quality as explained in the current

quality metric information document.

C. The AI results are accumulated. The

accumulation style is not specified, but

JSON is preferred for compatibility.

4) The accumulated results are returned for a

complete quality measurement report.

 The CI tool integration and dashboard

connection are out of the scope of this paper. We

plan on developing a code visualization tool

incorporating the CI tool, code analysis, and the

dashboard in our future work.

4. A Case Study for
Our Proposed Mechanism

For the applied practice, we ran a single iteration

of long method of the code smell [31] on a

sample Python code generated with Gemini 2.5

Flash [32]. We used the Qwen3 8B model [33]

for the generative AI and the BGE-M3 [34] for

the embedding model. Fig. 2 shows the code

Fig. 2. Python sample code (Gemini 2.5 Flash)

Fig. 3. Single iteration of code analysis

30 Jinmo Yang et al.: An Applied Practice on Software Quality Measurement Mechanism based on

Non-Caching Iteration-Augmented Generation

excerpt, and Fig. 3 shows the code analysis result.

From the result, it can be seen that the NCIAG

approach for software quality measurement is

valid and promising.

5. Conclusions

We have proposed the software quality

measurement method based on non-caching

iteration-augmented generation. This method

uses RAG-based AI enhancement technique to

correctly assess code quality by iterating through

documents that hold metric calculation

information with non-caching mechanism for the

AI to focus on current calculation. This paper is

an applied practice on our proposed mechanism.

Therefore, we plan on developing a complete

module for integration with a visualization tool

and conduct a comparison study with mature

rule-based and our previous training-based code

analyzers.

References

[1] Systems and software engineering –

Systems and software Quality

Requirements and Evaluation (SQuaRE) –

Product quality model, ISO/IEC

250100:2023, International Organization

for Standardization/International

Electrotechnical Commission, Geneva,

Switzerland, 2023.

[2] Y. Bang, S. Cahyawijaya, N. Lee et al., “A

multitask, multilingual, multimodal

evaluation of ChatGPT on reasoning,

hallucination, and interactivity,” arXiv

preprint arXiv:2302.04023, pp.1-45, 2023.

[3] M. Carbin, “Overparameterization: A

connection between software 1.0 and

software 2.0,” in Proc. of 3rd Summit on

Advances in Programming Languages

(SNAPL 2019), pp.1-13, 2019.

[4] M. Dilhara, A. Ketkar, and D. Dig,

“Understanding software-2.0: A study of

machine learning library usage and

evolution,” ACM Transactions on Software

Engineering and Methodology (TOSEM),

vol.30, no.4, pp.1-42, 2021.

[5] J. Park, “Software 3.0: A new programming

paradigm opened by LLMs,” The Journal of

the Korean Institute of Communication

Sciences, vol.41, no.1, pp.86-94, 2023.

[6] C. Park and R. Kim, “Detecting common

weakness enumeration through training the

core building blocks of similar languages

base don the CodeBERT model,” in Proc.

of 30th Asia-Pacific Software Engineering

Conference (APSEC), pp.641-642, 2023.

[7] C. Park, J. Yang, J. Kong, and R. Kim,

“Measuring software complexity of other

similar structured softwares through

learning the characteristics of a single high

level language,” in Proc. of 11th

International Symposium on Advanced and

Applied Convergence (ISAAC),

vol.AACL22, pp.96-100, 2023.

[8] P. Lewis, E. Perez, A. Piktus et al.,

“Retrieval-augmented generation for

knowledge-intensive NLP tasks,” in Proc.

of 34th Conference on Neural Information

Processing Systems (NeurIPS), pp.1-16,

2020.

[9] J. Yahaya, Z. Deraman, and A. Hamdan,

“Software quality form behavioral and

human perspectives,” International Journal

of Computer Science and Network Security

(IJCSNS), vol.8, no.8, pp.53-63, 2008.

[10] T. Sharma and D. Spinellis, “Do we need

improved code quality metrics,” arXiv

preprint arXiv:2012.12324, pp.1-11, 2020.

[11] A. Gorchakov, L. Demidova, and P.

Sovietov, “Analysis of program

representations based on abstract syntax

trees and higher-order Markov chains for

source code classification task,” Future

Internet, vol.15, no.9, pp.1-28, 2023.

[12] C. Park, B. Jeon, and R. Kim, “Effective

code static analysis and visualization based

on normalization of internal code

information,” in Proc. of Annual

Conference of KIPS (ACK2022), 2022.

[13] J. Kim, C. Park, S. Moon et al., “Blockchain

code and quality visualization,” The

Magazine of the IEIE, vol.49, no.463,

pp.66-74, 2022.

[14] C. Park, S. Moon, and R. Kim, “Quality

visualization of quality metric indicators

based on table normalization of static code

building information,” KIPS Trans. Softw.

And Data Eng., vol.12, no.5, pp.199-206,

2023.

[15] H. Abbass, “Editorial: What is artificial

intelligence?,” IEEE Transactions on

Artificial Intelligence, vol.2, no.2, pp.94-95,

2021.

The 20th Asia Pacific International Conference on Information Science and Technology(APIC-IST) 2025, July 2025 31

[16] A. Khan, R. Mekuria, R. Isaev, “Applying

machine learning analysis for software

quality test,” arXiv preprint

arXiv:2305.09695, pp.1-16, 2023.

[17] C. Park, S. Moon, and R. Kim, “Detecting

common weakness enumeration (CWE)

based on the transfer learning of

CodeBERT model,” KIPS Trans. Softw.

And Data Eng., vol.12, no.10, pp.431-436,

2023.

[18] Z. Feng, D. Guo, D. Tang, et al.,

“CodeBERT: A pre-trained model for

programming and natural languages,” arXiv

preprint arXiv:2002.08155, pp.1-12, 2020.

[19] T. Wolf, L. Debut, V. Sanh, et al.,

“Transformers: State-of-the-art natural

language processing,” in Proc. of 2020

Conference on Empirical Methods in

Natural Language Processing, pp.38-45,

2020.

[20] Vaibhavs10, 2024-ai-timeline, Hugging

Face Spaces. [Online]. Available:

https://huggingface.co/spaces/reach-vb/202

4-ai-timeline. Accessed May 22, 2025.

[21] Y. Kim, J. Kim, L. Kim, and S. Kim,

Quickpass AI: Prompt application strategies,

AI Prompt Application Strategies

Laboratory, 2024.

[22] D. Acharya, K. Kuppan, and B. Divya,

“Agentic AI: Autonomous intelligence for

complex goals – A comprehensive survey,”

IEEE Access, vol.13, pp.18912-18936,

2025.

[23] X. Hou, Y. Zhao, S. Wang, and H. Wang,

“Model context protocol (MCP): Landscape,

security threats, and future research

directions,” arXiv preprint

arXiv:2503.23278, pp.1-20, 2025.

[24] Google, Agent2Agent (A2A) Protocol,

Google. [Online]. Available:

https://google-a2a.github.io/A2A/.

Accessed May 21, 2025.

[25] Z. Luo, X. Shi, X. Lin, and J. Gao,

“Evaluation report on MCP servers,” arXiv

preprint arXiv:2504.11094, pp.1-16, 2025.

[26] Twillo Emerging Technology & Innovation

Team, MCP-TE benchmark: Evaluating

model context protocol task efficiency,

GitHub. [Online]. Available:

https://github.com/nmogil-tw/mcp-te-benc

hmark. Accessed May 21, 2025.

[27] N. Fenton and J. Bieman, Software Metrics:

A Rigorous and Practical Approach, 3ed,

CRC Press, 2014.

[28] S. Ali, V. Naganathan, D. Bork,

“Establishing traceability between natural

language requirements and software

artifacts by combining RAG and LLMs,”

Conceptual Modeling, pp.295-314,

Springer, 2024.

[29] M. Shahin, M. Babar, and L. Zhu,

“Continuous integration, delivery and

deployment: A systematic review on

approaches, tools, challenges and

practices,” IEEE Access, vol.5,

pp.3909-3943, 2017.

[30] S. Bobrovskis and A. Jurenoks, “A survey

of continuous integration, continuous

delivery and continuous deployment,” in

Proc. of 2018 BIR workshops, pp.314-322,

2018.

[31] K. Shivashankar and A. Martini,

“PyExamine A Comprehensive,

UnOpinionated Smell Detection Tool for

Python,” arXiv preprint arXiv:2501.18327,

pp.1-12, 2025.

[32] Google, Gemini 2.5 Flash/ [Online].

Available:

https://cloud.google.com/vertex-ai/generati

ve-ai/docs/models/gemini/2-5-flash.

Accessed Jun. 11, 2025.

[33] A. Yang, A. Li, B. Yang, et al., “Qwen3

Technical Report,” arXiv preprint

arXiv:2505.09388, pp.1-35, 2025.

[34] J. Chen, S. Xiao, P. Zhang, et al., “BGE

M3-embedding: Multi-lingual,

multi-functionality, multi-granularity text

embeddings through self-knowledge

distillation,” arXiv preprint

arXiv:2402.03216, pp.1-18, 2024.

https://huggingface.co/spaces/reach-vb/2024-ai-timeline
https://huggingface.co/spaces/reach-vb/2024-ai-timeline
https://google-a2a.github.io/A2A/
https://github.com/nmogil-tw/mcp-te-benchmark
https://github.com/nmogil-tw/mcp-te-benchmark
https://cloud.google.com/vertex-ai/generative-ai/docs/models/gemini/2-5-flash
https://cloud.google.com/vertex-ai/generative-ai/docs/models/gemini/2-5-flash

	Proceedings_of_APIC-IST_2025
	Session 2
	2-1 An Applied Practice on Software Quality Measurement Mechanism based on Non-Caching Iteration-Augmented Generation

