
The 20th Asia Pacific International Conference
on Information Science and Technology

(APIC-IST 2025)

July 06-09, 2025, SAii Laguna Resorts, Phuket, Thailand
http://www.apicist.org

Proceedings of APIC-IST 2025

KOREAN SOCIETY FOR INTERNET INFORMATION

| Organized by |

Korean Society for Internet Information (KSII)

http://apicist.org/2025

ISSN 2093-0542

Contents

2-1
An Applied Practice on Software Quality Measurement Mechanism
based on Non-Caching Iteration-Augmented Generation
Jinmo Yang (Hongik Univ., ROK), Chansol Park (Wisenut Inc.,
ROK), R. Young Chul Kim (Hongik Univ., ROK)

26-31

2-2 Automatic Requirements Registration Mechanism
Yejin Jin, R. Young Chul Kim (Hongik Univ., ROK) 32-36

2-3
Developing a RAG-based Intelligent Chatbot using Dify and Ollama:
Focusing on educating Developers on the LMS Environment
Jaeho Kim, Ji Hoon Kong, Ki Du Kim, R. Young Chul Kim (Hongik
Univ., ROK)

37-40

2-4
Generating C3Tree Model with Non-Conditional Korean
Requirements Specification for Cause-Effect Graph
Woosung Jang, R. Young Chul Kim (Hongik Univ., ROK)

41-46

2-5
Scenario-based Modeling in AI Software Validation
Janghwan Kim (Hongik Univ., ROK), Kidu Kim (TTA, ROK), Hyun
Seung Son (Mokpo National Univ., ROK), R. Young Chul Kim
(Hongik Univ., ROK)

47-52

2-6

Best Practices in Designing a Multi-Persona AI Avatar Platform
for Solving Creative Problems
Chaeyun Seo, Sanggyoon Kim, Dongnyeon Kim, Chaeyoung Yong,
Jungmin Shon, Jihoon Kong, Janghwan Kim, R. Young Chul Kim
(Hongik Univ., ROK)

53-56

3-1
Relationship between Frontend and Backend for Web-based Fishing
Vessel Design Platform
Juhyoung Sung, Kyoungwon Park, Kiwon Kwon, Byoungchul Song
(KETI, ROK)

57-58

3-2
An Automated Water Flow Control System for Aquaculture Tanks
Juhyoung Sung, Sungyoon Cho, Yangseob Kim, Kiwon Kwon (KETI,
ROK)

59-60

KSII The 20th Asia Pacific International Conference on Information Science and Technology(APIC-IST) 2025.

Copyright ⓒ 2025 KSII 32

This research was conducted with the support of the Korea Creative Content Agency (Project Name: Artificial

Intelligence-Based Interactive Multimodal Interactive Storytelling 3D Scene Authoring Technology Development,

Project Number: RS-2023-00227917, Contribution Rate: 100%) and the Korea Research Foundation's four, Brain

Korea 21 (Project Name: Ultra-Distributed Autonomous Computing Service Technology Research Team, Project

Number: 202003520005).

Automatic Requirements Registration
Mechanism

Yejin Jin and R. Young Chul Kim*
SE Laboratory, Hongik University

Seoul, South Korea

[e-mail: yejin_jin@g.hongik.ac.kr, bob@hongik.ac.kr]

*Corresponding author: R. Young Chul Kim

Abstract

The Software Requirements Specification (SRS) is an essential document in the early phases of software

development. However, the existing methods of manually analyzing documents and registering tasks in the Issue

Tracking System consume a lot of time and human resources. To solve this, we propose an automated mechanism

to classify functional requirements from the SRS and integrate it with an Issue Tracking System, such as Redmine.

For this, we 1) extract functional requirements by learning the classification model using the PURE (Public

Requirements) dataset, 2) register the result as an Issue in Redmine, 3) automatically generate UML design from

natural language based on the registered Issues, and 4) register the generated design in Redmine's Wiki and link it

with existing Issues. With this, we can guarantee the maintenance of requirement traceability among requirements,

designs, and code. Finally, we may increase development productivity.

Keywords: Software Development Process, Functional Requirements, Issue Tracking System

1. Introduction

The Software Requirements Specification

(SRS) is written through communication

between stakeholders, based on customer needs

[1]. SRS includes system overview, user

requirements, functional requirements, and

non-functional requirements. Software

development is designed, developed, and tested

with a focus on the functional requirements

outlined in the SRS. These functional

requirements are used for issue management and

implementation planning in the software

development cycle. Therefore, it is essential to

classify and understand them accurately.

Recently, research has been conducted to

classify non-functional requirements (NFR) and

functional requirements (FR) from SRS using

machine learning and natural language

processing technologies [2, 3]. However, most

research focuses on improving the accuracy of

classification models. There is a lack of research

on applying analyzed requirements to the

software development process. Many software

developers utilize the Issue Tracking System to

convert functional requirements into actual

development tasks [4]. The Issue Tracking

System enables systematic software

development and collaboration, task allocation,

and task progress tracking. However, to utilize

this, developers must directly interpret the SRS

document and manually create issues based on it.

This manual work requires a significant amount

of time and costs [5].

Therefore, we propose a mechanism that

The 20th Asia Pacific International Conference on Information Science and Technology(APIC-IST) 2025, July 2025 33

classifies functional requirements from the SRS

and links them to the Issue Tracking System to

automatically register and track issues. In

addition, we conducted a study on automatically

generating designs by consistently analyzing

natural language requirements in a previous

study [6]. We apply this in this study to connect

SRS to the design model. This approach can

contribute to improved consistency between

requirements and designs, as well as enhanced

development productivity through automation.

In addition, when requirements change, they can

be automatically tracked and reflected in the

design. Therefore, the efficiency of change

management is expected to improve.

Section 2 describes related research, including

prior research on requirements classification

through AI learning, and explains the Issue

Tracking System used in this study. Section 3

describes the mechanism of this study. Finally,

Section 4 mentions our conclusion.

2. Related Works

2.1 Approaches to Software Requirement
Classification Using Artificial
Intelligence Learning

Accurate requirements analysis is essential for

developing high-quality software. Research on

automatically classifying software requirements

has been ongoing, and recently, deep learning

and pre-trained models have been utilized.

Khayashi applied various deep learning

algorithms to classify functional and

non-functional requirements [2]. We extracted

and labeled requirements using the PURE

(Public Requirements) data set. We then

extracted features using various deep learning

models (LSTM, BiLSTM, GRU, and CNN) and

embeddings (Keras and GloVe). Additionally,

ensemble learning based on Hard/Soft Voting

was applied to enhance the performance of

requirements classification.

In another study, Rahman proposes a feature

extraction algorithm based on pre-trained

embedding models (GloVe, Word2Vec,

FastText) to classify non-functional

requirements in limited data environments [3].

This study classifies non-functional

requirements into five categories by utilizing the

International RE Conference 2017 Challenge

and PROMISE datasets.

Studies that apply learning models to

requirements classification only consider the

accuracy of the model. However, there are very

few cases in which this classification has been

used in actual work. Therefore, we apply it to the

Issue Tracking System to improve developers'

work efficiency and reduce costs.

2.2 Issue Tracking System

The software development life cycle consists

of the following phases: Requirements Analysis,

Design, Development, and Testing. Each phase

produces an output, and each output should be

stored with version control to ensure traceability

[7]. An issue-tracking system is commonly used

for this purpose. Most developers manage the

entire development process through an issue

tracking system. The Issue Tracking System

registers various bugs, tasks, and feature requests

that occur in software development or project

management. This tool can enhance the quality

of software products by improving collaboration

efficiency and enabling tracking of bugs and

feature change requests. Additionally, since it is

integrated with project management, it provides

a comprehensive understanding of the overall

project flow, encompassing schedule

management and resource allocation.

Table 1. Comparison of Issue Tracking Systems

Category Jira [8]
GitHub

Issues [9]
Redmine

[10]

Type
Commercial

ITS

It's built

into

GitHub

Open

Source

ITS

CI / CD

Integration

Bitbucket,

GitHub,

GitLab

GitHub

Actions

Jenkins,

Hook, …

Project

Management
Advanced Basic Moderate

Customize High Low
Very

High

Learning

Curve
High Low Moderate

Issue Tracking Systems include tools such as

Jira, Redmine, and GitHub Issues. These tools

support various functions, including task

34 Yejin Jin and R. Young Chul Kim: Automatic Requirements Registration Mechanism

registration, status tracking (such as new, in

progress, or completed), team member

assignment, deadline setting, and issue filtering.

Table 1 shows the features of each tool.

Jira has a wide range of features and is

suitable for large companies. However, very

complex control is required. GitHub Issues is

optimized for Git-centric collaboration but

provides limited customization options.

Redmine, although it features a relatively

outdated user interface compared to other tools,

is free, open-source, and supports various

plugins, offering powerful customization options.

Therefore, Redmine is selected for this study due

to its flexibility in adapting to the proposed

research workflow.

3. Automatic Task Assignment
Mechanism from Software

Requirements Specification

We develop a software development process

based on SRS documents. The proposed method

extracts functional requirements through AI

learning and assigns them to issues in the Issue

Tracking System. Once each function is saved as

an issue, a design drawing is created based on it.

The mechanism proposed in this study is as

shown in Fig. 1.

Our mechanism goes through four procedures.

1) Extract functional requirements from SRS

documents written in natural language using AI,

2) Register the extracted functional requirements

as issues in Redmine, 3) Generate a UML design

based on the registered issues according to the

process of previous studies, and 4) Register the

generated design image in Redmine Wiki. Even

if the SRS document is revised, the basic process

procedure remains unchanged. In this case, to

maintain traceability of requirements and

designs, the existing UML design is linked to the

existing issue, and the new UML design is

related to the latest issue.

3.1 Functional Requirements
Classification

We extract functional requirements from SRS

documents using AI. Documents can be divided

into functional requirements, non-functional

requirements, and introduction, and supervised

learning-based text classification is possible.

Sentences are extracted from SRS documents,

and unnecessary symbols are removed through a

preprocessing process. Each sentence is

vectorized through text embedding, and the

generated sentence vector is input to a trained AI

model to predict the sentence category. The AI

model classifies whether a given SRS sentence

corresponds to a functional requirement. We use

Fig. 1. Automatic Requirements Registration Mechanism Process

The 20th Asia Pacific International Conference on Information Science and Technology(APIC-IST) 2025, July 2025 35

the PURE (Public Requirements) dataset for

learning [11]. The dataset comprises 4,661

requirements, including 2,617 functional

requirements and 2,044 non-functional

requirements. Rather than analyzing the

sentences in detail, we focus on inferring the

meaning of each sentence and identifying the

category to increase the efficiency of

requirements management. This method reduces

repetition and the possibility of errors in the

existing requirement identification process,

which relies on manual work.

3.2 Register an issue in the Issue
Tracking System

Once the classification of functional

requirements is completed, it must be stored in

the Issue Tracking System for project

development. We use Redmine among the Issue

Tracing Systems. Redmine provides a REST API.

Therefore, data can be retrieved quickly and

easily in JSON format. Redmine tasks can be

categorized by project type. In this study, we

configure four Redmine issue types

—requirements, design, implementation, and

testing — according to the software development

process. We read the previously classified

functional requirements and automatically

register the title and description of the issue in

the requirement issue type. After that, developers

can check the registered tasks in the Redmine

web environment and modify the status, priority,

and person in charge of the functions.

3.3 Generate Design from Issues

To extract design from functional

requirements, we apply previous research [6]. If

requirements have been identified, this step

analyzes the requirements in detail. To analyze

this systematically, we go through six steps. 1)

Requirements written in complex or compound

sentence forms are first converted into simple

sentences. 2) Sentence structure and morphology

are then analyzed using Noam Chomsky's

Syntactic Structures Theory [12]. We utilize the

Python-based NLTK (Natural Language Toolkit)

library, which supports tokenization and

part-of-speech tagging. 3) Semantic analysis is

performed using Fillmore's Semantic Roles

theory [13]. This theory identifies the main verb

and finds a relationship between related nouns,

assigning a role to each. We utilize GPT to

analyze this process. 4) After the sentence

analysis, a filtering process is applied to reduce

redundancy. Redundancy in requirements can

lead to duplication in design and code. 5) The

deduplicated semantic roles are then mapped

using UML design elements. The resulting

design information is stored in a structured

format that specifies how the semantic data

should be saved. 6) Finally, based on the saved

data, we use PlantUML to generate diagram

scripts and images.

3.4 Register the Design in the Wiki of the
Issue Tracking System

The UML diagram created based on the issue

is stored in a repository that Redmine can

recognize. The designs outlined in the actual

SRS document are categorized under the design

type of work, and the design created by this study

is stored in the wiki. Redmine's wiki can upload a

variety of files, and we use an image file.

Additionally, it utilizes a hyperlink to the work

corresponding to the design, ensuring

trackability between functional requirements and

design. Additionally, the wiki can track changes

by version. Therefore, when a new design is

created, the numbers for each version are given

sequentially and can be compared and confirmed

by the design of each version.

4. Conclusions

The Software Requirements Specification

(SRS) is analyzed manually by developers and

registered in an Issue Tracking System for

collaborative software development. However,

this manual process is time-consuming and can

lead to issues such as missing requirements and

implementation errors.

Therefore, we propose a mechanism that

automatically classifies functional requirements

from Software Requirements Specification

(SRS) documents. The classified requirements

are then integrated into Redmine, an

issue-tracking system, where they are registered

as issues. This approach minimizes repetitive

and error-prone manual tasks, enabling a more

efficient collaborative development environment.

In addition, automation is extended to the design

phase by automatically generating UML models

from the classified requirements using natural

language. To ensure traceability between

requirements and design, the Redmine structure

36 Yejin Jin and R. Young Chul Kim: Automatic Requirements Registration Mechanism

was configured to align with the study's

mechanism, thereby increasing usability.

This study can improve the productivity and

accuracy of software development by

automating the requirements registration process.

Additionally, the process from requirements to

design is automated, ensuring traceability at

every phase. This enables systematic quality

assurance and change management throughout

the development process.

We focused on functional requirements;

however, future research will include the

classification of non-functional requirements and

the establishment of a systematic issue

registration process. Additionally, we currently

utilize the Issue Tracking System to develop the

process; however, in the future, we plan to

automate the code generation, build, testing, and

deployment phases by integrating it with the

CI/CD (Continuous Integration/Continuous

Deployment) pipeline. Through the integration

of automation into the development process, we

aim to enhance both the quality and efficiency of

software development.

References

[1] D. Dave, A. Celestino, A.S. Varde, and V.

Anu, “Management of implicit

requirements data in large SRS documents:

Taxonomy and techniques,” ACM

SIGMOD Record, vol.51, no.2, pp.18-29,

2022. doi: 10.1145/3552490.3552494

[2] F. Khayashi, B. Jamasb, R. Akbari, and P.

Shamsinejadbabaki, “Deep learning

methods for software requirement

classification: A performance study on the

pure dataset,” arXiv preprint

arXiv:2211.05286, 2022. doi:

10.48550/arXiv.2211.05286

[3] K. Rahman, A. Ghani, A. Alzahrani, M.U.

Tariq and A.U. Rahman, “Pre-trained

model-based NFR classification:

Overcoming limited data challenges,” IEEE

Access, vol.11, pp. 81787-81802, 2023. doi:

10.1109/ACCESS.2023.3301725

[4] D. Bertram, A. Dane, S. Greenberg, and R.

Walker, “Communication, collaboration,

and bugs: the social nature of issue tracking

in small, collocated teams,” in Proc. of the

2010 ACM conference on Computer

supported cooperative work, pp.291-300,

2010. doi: 10.1145/1718918.1718972

[5] T. Merten, B. Mager, P. Hübner, T.

Quirchmayr, S. Bürsner, and B. Paech,

“Requirements Communication in Issue

Tracking Systems in Four Open-Source

Projects,” in Proc. of the 6th Int. Workshop

on Requirements Prioritization and

Communication, pp.114-125, 2015.

[6] Y.J. Jin, K.D. Kim, D.Y. Yoo, and R.Y.C.

Kim, “Adopting Generative AI in Each

Phase of Software Life Cycle for Software

Development Approach,” in Proc. of the

Annual Symposium of KIPS 2025,

pp.401-404, 2025.

[7] J. Cleland-Huang, O.C.Z. Gotel, J.H. Hayes,

P. Mader, and A. Zisman, “Software

traceability: trends and future directions,” in

Proc. of the Future of Software Engineering

Proceedings, pp.55-69, 2014. doi:

10.1145/2593882.2593891

[8] M. Ortu, G. Destefanis, M. Kassab, and M.

Marchesi, “Measuring and Understanding

the Effectiveness of JIRA Developers

Communities,” in Proc. of the 2015

IEEE/ACM 6th International Workshop on

Emerging Trends in Software Metrics,

pp.3-10, 2015. doi:

10.1109/WETSoM.2015.10

[9] T. F. Bissyandé, D. Lo, L. Jiang, L.

Réveillère, J. Klein, and Y. L. Traon, “Got

issues? Who cares about it? A large-scale

investigation of issue trackers from

GitHub,” in Proc. of the 2013 IEEE 24th

International Symposium on Software

Reliability Engineering (ISSRE),

pp.188-197, 2013. doi:

10.1109/ISSRE.2013.6698918.

[10] L. Montgomery, C. Lüders, and W. Maalej,

“Mining Issue Trackers: Concepts and

Techniques,” Handbook on Natural

Language Processing for Requirements

Engineering, pp.309-336, 2025.

doi: 10.1007/978-3-031-73143-3_11

[11] A. Ferrari, Alessio, G.O. Spagnolo, and S.

Gnesi, “Pure: A dataset of public

requirements documents,” in Proc. of the

2017 IEEE 25th International

Requirements Engineering Conference

(RE), pp.502-505, 2017. doi:

10.1109/RE.2017.29.

[12] N. Chomsky, Syntactic structures, USA:

Mouton de Gruyter, 2002.

[13] C. J. Fillmore, The Case for Case, New

York: HR&W, 1968.

	Proceedings_of_APIC-IST_2025
	Session 2
	2-2 Automatic Requirements Registration Mechanism

